
aergo-guide Documentation

AERGO team and contributors

May 18, 2022

Platform

1 Introduction 3
1.1 Design goals . 3
1.2 Current features . 3
1.3 Roadmap . 4

2 Dapp Development 5
2.1 Development cycle . 5
2.2 Design . 5
2.3 Clients . 5
2.4 Smart contracts . 6
2.5 Infrastructure . 6

3 Running a Node 7
3.1 Quickstart . 7
3.2 Configuration . 8
3.3 Monitoring . 10
3.4 Configuring a Network . 12
3.5 Advanced Topics . 15
3.6 Troubleshooting . 20

4 Using Public Networks 25
4.1 Connecting to Well-known Nodes . 25
4.2 Syncing . 26
4.3 Creating Accounts . 27
4.4 Funding Accounts . 28
4.5 Monitoring . 28
4.6 Snapshots . 29
4.7 Troubleshooting . 29

5 Using Raft consensus 31
5.1 Configuration . 31
5.2 Configuring a Network Using RAFT . 32
5.3 Dynamic Membership Changement . 34
5.4 Recovery . 37

6 Smart Contracts 39
6.1 Lua . 39

i

6.2 Aergo SCL . 67
6.3 Java Database Connectivity (JDBC) . 68

7 Technical Specifications 69
7.1 Addresses . 69
7.2 Token Units . 69
7.3 Name System . 70
7.4 Consensus Algorithm . 71
7.5 Transactions . 72
7.6 Smart Contracts . 74
7.7 Transaction Fees . 75
7.8 Blocks . 79
7.9 P2P . 80
7.10 Keystore . 87
7.11 Block Management . 89
7.12 Chain Management . 90

8 Contributing 95
8.1 Ways to Contribute . 95

9 Join the Community 97

10 Building from Source 99
10.1 Linux . 99
10.2 macOS (Do not support anymore) . 100
10.3 Windows . 100
10.4 Generating protobuf files . 100

11 SDKs 101

12 Other Languages 103

13 Tools 105
13.1 Aergocli . 105
13.2 Aergoluac . 114
13.3 Ship . 114
13.4 Brick . 114
13.5 Polaris . 115

14 API 119
14.1 Using gRPC . 119
14.2 Protocol Documentation . 119

ii

aergo-guide Documentation

Aergo is an open blockchain platform that allows businesses to build innovative applications and services by sharing
data on a trustless and distributed IT ecosystem. Aergo combines the best of public and private blockchains to be
scalable, enterprise-ready, and easy to develop with.

This website contains guides for developers to get started developing with Aergo and detailed references.

Platform 1

aergo-guide Documentation

2 Platform

CHAPTER 1

Introduction

Aergo is developing a practical blockchain platform, frameworks, libraries, and tools.

1.1 Design goals

There are four main ideologies regarding this project.

• Developer-friendly

• Guaranteed performance

• Scalable architecture

• Open, extensible, inter-connectable network

1.2 Current features

• BFT-dPOS with voting

• Name system

• Aergo Lua smart contract

• Ship (development framework, package management)

• Simple client API

• Client SDKs

• Sub projects

– Litetree

– Sparse Merkle Tree

• Hub Enterprise (management and monitoring)

3

aergo-guide Documentation

• Merkle bridge verification

• Testnet deployment

1.3 Roadmap

These features are under active development or planned.

• Aergo SQL

• Parallelism (inter-contract)

• Simple branching (2WP or simple Plasma)

• Orchestration with Aergo Horde

• Service with Aergo Hub

• Advanced performance features

4 Chapter 1. Introduction

CHAPTER 2

Dapp Development

This article gives an introduction into the high level approach to developing dapps on the AERGO blockchain.

2.1 Development cycle

These are components of today’s blockchain application development cycle that Aergo offers new solutions for.

1. Design (UX patterns, economic models)

2. Clients (interacting with the blockchain)

3. Smart contracts (new programming patterns, debugging and testing)

4. Infrastructure (deployment cost, security, privacy, monitoring)

2.2 Design

The possibilities of designing applications for Aergo are endless: social networks, distributed organizations, games,
monetary systems, asset management, trading, databases, public deliberation, crowdsourcing, . . .

Aergo tries to not limit designers’ and developers’ creativity to create novel applications. However, the platform aims
to offer reasonable guidelines, standard protocols, and well-tested models to make designing dapps easier than ever.

2.3 Clients

Using the Hera SDK family, client applications can easily interact with the blockchain.

• Read more

5

../sdks/index.html

aergo-guide Documentation

2.4 Smart contracts

Smart contracts are the main backend component of distributed applications. As other blockchain platforms had a
serious limitation in terms of cost and scalability, it used to be not feasible to develop large scale, complex systems.
With Aergo and the use of embedded sidechains and proof systems, smart contracts can really shine.

• Read more

Aergo also offers a development toolchain that includes package management, Aergo Ship.

2.5 Infrastructure

Aergo is currently available as a public testnet and separate private installations. In the future, a network of blockchains
can be orchestrated using Aergo Horde. Aergo Hub will offer an easy configuration and monitoring interface. With
these features, developers will not have to worry about the deployment of their applications.

6 Chapter 2. Dapp Development

../smart-contracts/index.html
../tools/ship.html
../using-testnet/index.html

CHAPTER 3

Running a Node

This section includes general instructions for running Aergo nodes.

If you want to connect to an existing Aergo network (such as the public mainnet and testnet), please also refer to this
section for more details.

3.1 Quickstart

3.1.1 Using Docker

The easiest way to run a local Aergo server is using Docker. An up-to-date Docker image is always available on
Docker Hub.

docker run -p 7845:7845 aergo/node

You can pass arguments to the server like this:

docker run -p 7845:7845 aergo/node aergosvr --testmode

To supply your own config file, use:

docker run -p 7845:7845 -v $(pwd)/config.toml:/aergo/config.toml aergo/node aergosvr -
→˓-config /aergo/config.toml

Syncing with public networks: Please refer to the syncing guide for further instructions.

3.1.2 Using binaries

You can download the most recent binary releases from Github.

7

../using-network/index.html
../using-network/index.html
https://hub.docker.com/r/aergo/node/
../using-network/syncing.html
https://github.com/aergoio/aergo/releases

aergo-guide Documentation

3.1.3 Building from source

You can also build the binaries yourself from source. See here for details.

3.2 Configuration

This page explains the possible ways to configure an Aergo node.

There are three common modes of operation for aergo server:

• BP Node - Block provider node, which mines and propagates blocks

• Agent Node - Node to improve security and block propagation of BP node, added since Aergo v2.0

• Watcher Node - Node to get and validate all blocks, previously named to Full Node before Aergo v2.0

• Single Node - BP Node without peer, which uses to something like test.

We describe only single node configuration in this. More will updated for the BP Node and full node.

3.2.1 Single Aergo Server

We will show default configuration file next. You can check the each fields’ meaning in here

aergo TOML Configuration File (https://github.com/toml-lang/toml)
base configurations
datadir = ".aergo/data"
enableprofile = false
profileport = 6060
enablerest = false
enabletestmode = false
authdir = ".aergo/auth"

[rpc]
netserviceaddr = "127.0.0.1"
netserviceport = 7845
nstls = false
nscacert = ""
nscert = ""
nskey = ""
nsallowcors = false

[rest]
restport = "8080"

[p2p]
Set address and port to which the inbound peers connect, and don't set loopback
→˓address or private network unless used in local network
netprotocoladdr = ""
netprotocolport = 7846
npbindaddr = ""
npbindport = -1
Set file path of key file
npkey = ""
npaddpeers = [
]

(continues on next page)

8 Chapter 3. Running a Node

../contribution/building-from-source.html
https://github.com/aergoio/aergo/wiki/server_configuration

aergo-guide Documentation

(continued from previous page)

nphiddenpeers = [
]
npmaxpeers = 100
nppeerpool = 100
npexposeself = true
npusepolaris = true
npaddpolarises = [
]

[blockchain]
blockchain configurations
maxblocksize = 1048576

[mempool]
showmetrics = false
dumpfilepath = ".aergo/mempool.dump"

[consensus]
enablebp = true

3.2.2 Testmode

To enable testmode, either pass the command line option --testmode to aergosvr or set enabletestmode =
true in the configuration.

In testmode, all new accounts are assigned a high number of Aergo tokens by default, basically circumventing balance
checks. This means you can send any transaction without first pre-funding hard-coded accounts using a genesis block.

Testmode MUST NOT be used in production.

3.2.3 Reference

3.2.4 Logging options

It is possible to customize the log output format of all Aergo CLI tools using a file called arglog.toml placed in
the current working directory.

This file is specified here.

level = "info" # default log level
formatter = "json" # format: console, console_no_color, json
caller = true # enabling source file and line printer
timefieldformat = "RFC3339"

[chain]
level = "info" # optional, log level for 'chain' module

[dpos]
level = "info"

[p2p]
level = "info"

[consensus]
(continues on next page)

3.2. Configuration 9

https://github.com/aergoio/aergo-lib/blob/fe30a6e424e5b963f3c4e9c0ea3da4c0c87f595b/log/log.go#L9-L40

aergo-guide Documentation

(continued from previous page)

level = "info"

[mempool]
level = "info"

[contract]
level = "info"

[syncer]
level = "info"

[bp]
level = "info"

3.2.5 Account storage

Changed in version 2.2.0.

Since version 2.2.0, aergosvr and aergocli use a new keystore file format for storing accounts. Before, accounts were
saved as encrypted strings in a BadgerDB. The new keystore storage offers better portability and improved security.

For backwards compatability, aergocli and aergosvr will continue to use the old storage if it already exists (i.e. if there
is an accounts directory in the data directory). If you want to migrate your existing installation to take advantage of the
improved storage, you need to export all existing accounts, delete the ‘accounts’ directory inside the data directory,
and then re-import your accounts. Please check the aergocli help for how to do that.

New installations will use the new storage method by default.

3.3 Monitoring

Aergo server has 5 major subcomponents: Account, Chain, MemPool, RPC, and P2P.

We can get status of component using aergocli node command (see here for detail).

$ aergocli node
{

"AccountsSvc": {
"status": "started",
"acc_processed_msg": 3,
"msg_queue_len": 0,
"msg_latency": "69.851µs",
"error": "",
"actor": null

},
"ChainSvc": {

"status": "started",
"acc_processed_msg": 238,
"msg_queue_len": 0,
"msg_latency": "68.849µs",
"error": "",
"actor": {

"orphan": 0
}

},

(continues on next page)

10 Chapter 3. Running a Node

https://github.com/aergoio/aergo/wiki/tools_aergocli

aergo-guide Documentation

(continued from previous page)

"MemPoolSvc": {
"status": "started",
"acc_processed_msg": 237,
"msg_queue_len": 0,
"msg_latency": "59.462µs",
"error": "",
"actor": {

"cache_len": 0,
"dead": 0,
"orphan": 0

}
},
"RPCSvc": {

"status": "started",
"acc_processed_msg": 120,
"msg_queue_len": 0,
"msg_latency": "71.785µs",
"error": "",
"actor": null

},
"p2pSvc": {

"status": "started",
"acc_processed_msg": 120,
"msg_queue_len": 0,
"msg_latency": "54.783µs",
"error": "",
"actor": null

}
}

As it shown above, each component has 6 values, which are

• status *

• acc_processed_msg

– number of message processed by the component

– message is basic unit for communicate with other components

• msg_queue_len

– number of pending messages for the component

• msg_latency

– average latency for processing a message

• error *

• actor

– component specific statistics are shown

– for example, ChainSvc

“actor”: { “orphan”: 0 }

orphan represents number of orphan block the component has

3.3. Monitoring 11

aergo-guide Documentation

3.4 Configuring a Network

This article explains the steps needed to configure a network of multiple block producers. You can follow this guide
to setup a private Aergo blockchain network.

This guide specifically requires no prior setup, so it should be easy to follow along with new bare machines running
Ubuntu. It has been tested with AWS EC2 instances. We will setup three block producers, but you can adjust the
procedure to any number of BPs.

3.4.1 Per-machine setup

Install Docker

You will need Docker for this setup, so let’s install that now.

sudo apt-get update && sudo apt-get install docker.io
sudo usermod -aG docker ubuntu

NTP

Timing is critical in a blockchain, so it’s better to configure the machines’ time setup manually:

sudo bash
apt-get install chrony
vi /etc/chrony/chrony.conf

server time1.google.com iburst
server time2.google.com iburst
server time3.google.com iburst
server time4.google.com iburst

systemctl restart chronyd
chronyc makestep

3.4.2 Generate BP accounts and keys

You can use any machine (e.g. your own local machine) for this.

Start by installing aergocli if you haven’t already.

Generate accounts

aergocli account new --password yourpassword --path genesis
(displays generated address)

aergocli account new --password yourpassword --path bp01
(displays generated address)

aergocli account new --password yourpassword --path bp02
(displays generated address)

aergocli account new --password yourpassword --path bp03
(displays generated address)

Export accounts

12 Chapter 3. Running a Node

../tools/aergocli.html

aergo-guide Documentation

aergocli account export --address [insert address from genesis] --password
→˓yourpassword --path genesis
(displays exported private key)

aergocli account export --address [insert address from bp01] --password yourpassword
→˓--path bp01
(displays exported private key)

aergocli account export --address [insert address from bp02] --password yourpassword
→˓--path bp02
(displays exported private key)

aergocli account export --address [insert address from bp03] --password yourpassword
→˓--path bp03
(displays exported private key)

Generate peer keys

aergocli keygen bp01
Wrote files bp01.{key,pub,id}.

aergocli keygen bp02
Wrote files bp02.{key,pub,id}.

aergocli keygen bp03
Wrote files bp03.{key,pub,id}.

3.4.3 Write configuration files

genesis.json (same for all machines)

{
"chain_id":{

"magic": "[insert an identifier string for your network]",
"public": false,
"mainnet": false,
"consensus": "dpos"

},
"timestamp": 1548918000000000000,
"balance": {

"[insert address from genesis]": "470000000000000000000000000",
"[insert address from bp01]": "10000000000000000000000000",
"[insert address from bp02]": "10000000000000000000000000",
"[insert address from bp03]": "10000000000000000000000000"

},
"bps": [

"[insert text from bp01.id]",
"[insert text from bp02.id]",
"[insert text from bp03.id]"

]
}

config.toml (one per machine)

aergo TOML Configration File (https://github.com/toml-lang/toml)
base configurations

(continues on next page)

3.4. Configuring a Network 13

aergo-guide Documentation

(continued from previous page)

datadir = "./data"
enableprofile = true
profileport = 6060
enablerest = true
personal = false

[rpc]
netserviceaddr = "0.0.0.0"
netserviceport = 7845
nstls = false
nscacert = ""
nscert = ""
nskey = ""
nsallowcors = false

[p2p]
netprotocoladdr = "{LOCAL_IP}" # Insert IP address from this machine
netprotocolport = 7846
npbindaddr = "0.0.0.0"
npbindport = 7846
nptls = false
npcert = ""
npkey = "bp{01,02,03}.key" # Name of key file of node
npaddpeers = [

"/ip4/[IP ADDRESS FROM BP 01]/tcp/7846/p2p/[PEER ID FROM BP 01]",
"/ip4/[IP ADDRESS FROM BP 02]/tcp/7846/p2p/[PEER ID FROM BP 02]",
"/ip4/[IP ADDRESS FROM BP 03]/tcp/7846/p2p/[PEER ID FROM BP 03]"

]

npexposeself = false
npusepolaris = false
nphiddenpeers= [

"[PEER ID FROM BP 01]",
"[PEER ID FROM BP 02]",
"[PEER ID FROM BP 03]"

]

[blockchain]
usefastsyncer = true
blockchainplaceholder = false
coinbaseaccount = "[ADDRESS FROM THIS PEER]"

[mempool]
showmetrics = true
dumpfilepath = "./data/mempool.dump"

[consensus]
enablebp = true

3.4.4 Running

We are going to use the Docker image aergo/node to run the server. Please refer to the Docker documentation for learn
about the available run options.

Check the directory contents

14 Chapter 3. Running a Node

https://hub.docker.com/r/aergo/node/
https://docs.docker.com/engine/reference/run/

aergo-guide Documentation

After following the above steps, you should now have these files in one directory for each machine. In this example
we use the path /blockchain, but you can use any directory as long as you substitute its local path in the Docker run
commands below.

/blockchain/
bp{01,02,03}.key
genesis.json
config.toml

Create genesis block

docker run --rm \
-v /blockchain:/aergo \
aergo/node \
aergosvr init --genesis /aergo/genesis.json --home /aergo --config /aergo/config.

→˓toml

Start the node

docker run -d --log-driver json-file --log-opt max-size=1000m --log-opt max-file=7 \
-v /blockchain:/aergo \
-p 7845:7845 -p 7846:7846 -p 6060:6060 \
--restart="always" --name aergo-node \
aergo/node \
aergosvr --home /aergo --config /aergo/config.toml

3.4.5 Further reading

You may now want to setup further full nodes as well as Polaris for automatic node discovery.

3.5 Advanced Topics

3.5.1 Genesis block configuration

The genesis block is the first block created on a new chain according to a predefined specification. If you want to
bootstrap your own Aergo blockchain, you will need to configure and create the genesis block. All nodes producing
blocks and syncing with the network need to use the same genesis block.

You can find an example genesis configuration json file here. It is the one used for the public testnet.

Key Type Explanation
chain_id obj
– magic string A name identifier used to distinguish different chains. Example: testnet.aergo.io
– public bool If this chain is for a public (true) or private network. This may affect certain features.
– mainnet bool If this is the main network (true) or a sidechain for another network.
– consensus string This blockchain’s consensus type (dpos)
– coinbasefee string The default transaction fee amount
timestamp number The genesis block’s creation timestamp in nanoseconds
balance obj A mapping of addresses and allocated balances
bps list A list of fallback block producer peer ids.

3.5. Advanced Topics 15

configuration.html
../tools/polaris.html
https://github.com/aergoio/aergo-docker/blob/1ad16cf7881d9ba8f2efc350cf609c9416e76666/node/testnet-genesis.json

aergo-guide Documentation

3.5.2 Manually creating peer identification

Every peer (i.e. instance of aergosvr) is identified by a peer id, derived from its public key. If unspecified, aergosvr
creates these automatically, but you may want to do it manually to control the generation of keys and make backups.
You can use the CLI to do that:

aergocli keygen your-keyname

Using Docker:
docker run --rm -v $(pwd):/tools/ aergo/tools aergocli keygen your-keyname

You then need to specify the path to the generated your-keyname.key file in the Aergo configuration:

...
[p2p]
npkey = "/aergo/your-keyname.key"
...

3.5.3 Configuring Aergo Network 2

Aergo Network 2.0 added a new node configuration concept to protect BP more securely and spread the produced
blocks faster.

In the actual case of Aergo Network, the BP node is not directly exposed to the network, but is connected to the
network through the Full node on the front. By doing so, BP can focus computing resources on block production.
However, the connection between BPs in different region has a disadvantage of increasing propagation time as the
intermediate delivery stage occurs. And, for example, communications in regions that are physically far away, such as
Asia and South America, may take a lot of time just by simply delaying the network, so it may be difficult to meet the
requirements for block production.

Agent actively discover other Agents or BPs in the public chain network to establish direct connections. The block
produced by client BP is passed to the Agent and BP of the public network in a way that focuses on speed and delay
time, and the new block notification from the Agent and BP of public network is passed to the client BP. On the other
hand, the Watcher is informed in a way that focuses on data efficiency.

Each node uses BP information and voting results recorded in the chain to verify the qualifications of a legitimate
BP, and the Agent checks the qualifications of the agent through certificates issued by a legitimate BP. It combines
with PeerID-based identification, which is also applied to Aergo Network 1.0, to enable accurate identification and
credentials.

16 Chapter 3. Running a Node

aergo-guide Documentation

Internal Zones

There may be several BPs in one private network; these BPs can be connected directly to spread the blocks without
having to pass through Agents. And these BPs can be more efficient in resource use by sharing Agents than by each
BP having Agents.

For efficient use of network and computing resources, Agent categorizes networks to internal and external, delivering
only internal to external, or vise versa.

The Agent node connects the client BPs in the internal network with other BPs or Agents in the external network. The
Agent passes blocks generated by a client to the BPs or Agents of the external network as quickly as possible, while
the blocks notified by the external BPs or Agents are passed to the client BPs.

3.5. Advanced Topics 17

aergo-guide Documentation

Configuration Example

NOTE: configuring BP and Agent are advanced topic, and wrong configuration can cause performance degradation or
abnormal operation. So this configrations are more strictly checked than other settings; read the document carefully
and set it up.

Suppose there is a foundation named Colchis, and the foundation decided to participate in the Aergo network. The
foundation establishes three BP nodes, one Agent node, and one node for TX registration and monitoring in the private
network. The private address and peer ID of each node are as follows.

BP1 : 192.168.25.21 / 16Uiu2HAmH1Eup6qLSQg3Bk7B5QbrVPk6Bzw7upHhZ74ZTS8kM
BP2 : 192.168.25.22 / 16Uiu2HAkzW5j6c6w9BhRnuudHuYc3Kqk4aNi4KbuoaYwVDx3HkS
BP3 : 192.168.25.23 / 16Uiu2HAkvwrouZCrCSG8BqMM1v9GRj11jfjfjfhby5fAXgbCg
Agent : 192.168.25.31 / 16Uiu2HAm7P7quSBCxPHe89wNUYwCki1M8F45kMMRjw5M6bQdVWEv
Watcher: 192.168.25.32 / 16Uiu2HAkvQYs1e6jVbpAeMfTNpDgUYhxry6gMRQnMAqymVL2Z45

The foundation registered the aergonode.colchis.org domain to join the chain network and forwarded the IP address of
the domain to the agent machine.

BPs and Watcher allow access only from the Foundation’s internal network and are linked to the public network only
through Agent.

The connection between Agent and client BP is built on the secured environment that the network manager cares
about; BP and Agent must specify each other correctly in configuraion.

configuration for BP

BP disables npexposeself, npdiscoverpeers, and npusepolaris settings so that they are not exposed to the outside and
do not automatically connect to external nodes. BP node also set agent field to peer id of agent node.

aergo TOML Configration File (https://github.com/toml-lang/toml)
base configurations
datadir = "./data"
enableprofile = false
personal = false

[p2p]
npkey = "bp01.key" # Name of key file of node
npaddpeers = [

"/ip4/192.168.25.22/tcp/7846/p2p/
→˓16Uiu2HAkzW5j6c6w9BhRnuudHuYc3Kqk4aNi4KbuoaYwVDx3HkS",

"/ip4/192.168.25.23/tcp/7846/p2p/
→˓16Uiu2HAkvwrouZCrCSG8BqMM1v9GRj11jfjfjfhby5fAXgbCg",

"/ip4/192.168.25.11/tcp/7846/p2p/
→˓16Uiu2HAm7P7quSBCxPHe89wNUYwCki1M8F45kMMRjw5M6bQdVWEv",

"/ip4/192.168.25.12/tcp/7846/p2p/
→˓16Uiu2HAkvQYs1e6jVbpAeMfTNpDgUYhxry6gMRQnMAqymVL2Z45"
]
npusepolaris = false
npexposeself = false
npdiscoverpeers = false # peer will not try to discover and connect other peers
→˓except for peers listed in npaddpeers
peerrole = "producer"
agent = "16Uiu2HAm7P7quSBCxPHe89wNUYwCki1M8F45kMMRjw5M6bQdVWEv"

[blockchain]
blockchainplaceholder = false

(continues on next page)

18 Chapter 3. Running a Node

aergo-guide Documentation

(continued from previous page)

coinbaseaccount = "[ADDRESS OF CONBASE ACCOUNT]"

[mempool]
showmetrics = true
dumpfilepath = "./data/mempool.dump"

[consensus]
enablebp = true

configuration for Agent

Agent activates npexposeself, npdiscoverpeers, npusepolaris settings, and also sets addresses that can be accessed from
the outside, so that they can connect to other nodes in the public network. Also set producers field to a list of the client
BP’s peer ids and internal zones.

aergo TOML Configration File (https://github.com/toml-lang/toml)
base configurations
datadir = "./data"
enableprofile = false
personal = false

[p2p]
netprotocoladdr = "agent.colchis.org"
npkey = "agent01.key" # Name of key file of node
npaddpeers = [

"/ip4/192.168.25.21/tcp/7846/p2p/
→˓16Uiu2HAmH1Eup6qLSQg3Bk7B5QbrVPk6Bzw7upHhZ74ZTS8kM",

"/ip4/192.168.25.22/tcp/7846/p2p/
→˓16Uiu2HAkzW5j6c6w9BhRnuudHuYc3Kqk4aNi4KbuoaYwVDx3HkS",

"/ip4/192.168.25.23/tcp/7846/p2p/
→˓16Uiu2HAkvwrouZCrCSG8BqMM1v9GRj11jfjfjfhby5fAXgbCg",

"/ip4/192.168.25.32/tcp/7846/p2p/
→˓16Uiu2HAkvQYs1e6jVbpAeMfTNpDgUYhxry6gMRQnMAqymVL2Z45"
]

npexposeself = true # peer is advertised by polaris or other peers
npusepolaris = true
peerrole = "agent"
producers = [

"16Uiu2HAmH1Eup6qLSQg3Bk7B5QbrVPk6Bzw7upHhZ74ZTS8kM",
"16Uiu2HAkzW5j6c6w9BhRnuudHuYc3Kqk4aNi4KbuoaYwVDx3HkS",
"16Uiu2HAkvwrouZCrCSG8BqMM1v9GRj11jfjfjfhby5fAXgbCg"

]
internalzones = ["192.168.25.1/24"]

[blockchain]

[mempool]
showmetrics = true
dumpfilepath = "./data/mempool.dump"

[consensus]
enablebp = false

3.5. Advanced Topics 19

aergo-guide Documentation

3.6 Troubleshooting

3.6.1 Storage errors

DB initilaize failure

Aergo uses Badger DB as its internal storage. If the DB creation fails for Badger at initial boot, boot process will fail.

In this case, you can see the following error when checking the server’s log.

failed to initialize chaindb
failed to initialize statedb

You need to make sure that you have write access to the path you want to create the data directory on the config file
If the database server was rebooted while it was running, it is possible that the DB datafile has been crashed. In this
case, a reinstallation is required.

check previously running processes

The DB initialize problem is most likely to occur when a new aergosvr is run without shutting down the existing
aergosvr completely. In this case, you can check with the following log.

panic: Fail to Create New DB: Cannot acquire directory lock on "config data directory
→˓".
Another process is using this Badger database.: resource temporarily unavailable`

In this case, terminate the existing aergosvr completely and restart it.

Miscellaneous DB errors

If an error occurs in DB, the following log is output.

Database Error: description...

In this case, it’s a good idea to first check to see if there is a problem with the filesystem .If there is no problem with
the filesystem, the DB datafile can be seen as corrupt. In this case, reinstallation is required.

Disk performance problem

The BP node generates a block every 1 second. When a block is created, it is stored in the DB and Disk I / O occurs
at this time.

If the disk I / O is too slow, the block created by the BP will not be added to the chain. This is because the block
generated by the node is propagated to another node but the block of the corresponding height is already generated in
the next BP. Therefore, the block arriving late comes to be discarded.

Check the disk I / O execution time through dd. This allows you to check for disk errors.

3.6.2 Network trouble

20 Chapter 3. Running a Node

aergo-guide Documentation

peer connection failure

If there is a problem with the network configuration, the peer connections may not be normal. you can check peer
connections as follows.

1. You need to make sure that the entire peer set in the config is connected. If there is an unconnected peer, check
the network configuration with the peer.

You can check the connection status of peers with the following command:

aergocli -p $ServerPort getpeers
[

{
"Address": "127.0.0.1",
"PeerID": "16Uiu2HAkxUPj8zUnSkBzP8f4mw9WvJ4s5DeMVarzsqBuyrDy6dmD",
"Port": "11002",
"State": "RUNNING"

}
]

network performance problem

aergo uses DPOS as a consensus algorithm. Blocks generated by one node must be transmitted to other nodes at a
high speed. If the block transmission is too slow due to the network problem, the block created by the BP will not be
included in the chain.

You can track the block creation time and the time passed to other nodes.

Oct 30 15:50:57.009 |INFO| block produced
→˓BP=16Uiu2HAmF5fpuk9ZWQbzHUuu9C1jwtqKnZdtkQYYDapA7AyoibWP caller=/Users/everjs/go/
→˓src/github.com/aergoio/aergo/consensus/impl/dpos/blockfactory.go:213 confirms=2
→˓id=6mdjTYFEKXJ4UQ3xdKEu5RybnVWh3Hio6VG8a5SAXPbp lpb=1356 module=dpos no=1358
→˓sroot=9hbmSFxzGj58YQuM2642zyo8jDAuu5qTWNG8JCMb78iZO`

Oct 30 15:50:57.012 |INFO| added block successfully. best=1358

Oct 30 15:50:57.013 |DEBUG| add block chainservice blockNo=1358 caller=/Users/ev
erjs/go/src/github.com/aergoio/aergo/chain/chainservice.go:252
→˓hash=6mdjTYFEKXJ4UQ3xdKEu5RybnVWh3Hio6VG8a5SAXPbp module=chain

3.6.3 Server Process Hang

The aergo server was developed using the proto actor framework. Each module in the server receives a request using
a message, performs an action on it, and returns a response.

At this time, if a specific module does not operate normally and hangs, it can be checked with the following command.

aergocli -p 10001 node
{

"AccountsSvc": {
"status": "started",
"acc_processed_msg": 202,
"msg_queue_len": 0,
"msg_latency": "55.623µs",
"error": "",

(continues on next page)

3.6. Troubleshooting 21

aergo-guide Documentation

(continued from previous page)

"actor": null
},

...

}

If a particular module hangs, the value of msg_queue_len field is high.

The details can be analyzed through the log by increasing the log level of the module.

3.6.4 Tracking status of Transaction

A transaction is added to a mempool and then executed when it is included in a block. Transactions are not included
in block if validation fails due to nonce, balance, etc.. All transactions in the block will have a receipt. If the VM fails
to execute contract, the error is recorded in the receipt. Therefore, the state of transaction may be as follows.

• State of transaction

– pending in mempool

– included in block

* sucess

* fail if contract

check status of transaction

Use the following command to track the status of the transaction.

aergocli -p $PORT gettx $TXHASH

If the transaction stays in the pending state in the mempool, the following status is output.

aergocli -p $PORT gettx $TXHASH
Pending: {
"Hash": "BTY3zrsBkVHTqFbpqKtwbXwgfpGwRoiAmKRrdFKfZRna",
"Body": {
"Nonce": 101,
"Account": "AmM5wCL3XhDngGAyYk6pbd2AYKSomVAKRqLBhnP8QsBMRRoA62fv",
"Recipient": "AmNeY5fDqvGAfpYYLxhy7AhSsFzCSL96iYBApR2aHvRzMY5D34Ky",
"Amount": 2560000,
"Payload": "",
"Limit": 0,
"Price": 0,
"Type": 0,
"Sign":

→˓"381yXZRAPSGAFbGYndN5xU3s9RXHddFbCxyutNtUYvyT4DbDt7jWyia4oM6CLGtXYeQqtQBvqTaNU2gwpdrCm5FjwFP6fZCQ
→˓"
}

}

22 Chapter 3. Running a Node

aergo-guide Documentation

check account

First, check the nonce and balance of the corresponding account. The status of the current account can be seen by the
command below.

aergocli -p $PORT getstate --address $ADDRESS

Ensure that the nonce and balance of transaction are consistent with the account status.

check status of mempool

There are too many transactions in mempool, which can take a long time to be included in the block. To see the current
status of mempool, try the following command.

aergocli -p $PORT node

In the cache_len field, you can see the total number of tx’s in mempool.

check receipt

If the transaction is contained in a block, you can use the receipt to check the execution result. Receipt can be seen
using transaction hash

aergocli -p $PORT receipt get $TXHASH
{
"contractAddress": "AmNeY5fDqvGAfpYYLxhy7AhSsFzCSL96iYBApR2aHvRzMY5D34Ky",
"status": "CREATED",
"ret": ""

}

3.6. Troubleshooting 23

aergo-guide Documentation

24 Chapter 3. Running a Node

CHAPTER 4

Using Public Networks

These pages explain how you can connect to and sync with public Aergo networks.

4.1 Connecting to Well-known Nodes

4.1.1 Mainnet

Use mainnet-api.aergo.io and the default port 7845 to connect to a public GRPC server for the mainnet.

docker run --rm aergo/tools aergocli -H mainnet-api.aergo.io blockchain

A public blockchain explorer is available at mainnet.aergoscan.io.

4.1.2 Testnet

Use testnet-api.aergo.io and the default port 7845 to connect to a public GRPC server for the testnet.

docker run --rm aergo/tools aergocli -H testnet-api.aergo.io blockchain

A public blockchain explorer is available at testnet.aergoscan.io.

4.1.3 Alpha

Use alpha-api.aergo.io and the default port 7845 to connect to a public GRPC server for the alpha network.

docker run --rm aergo/tools aergocli -H alpha-api.aergo.io blockchain

A public blockchain explorer is available at alpha.aergoscan.io.

25

https://alpha.aergoscan.io
https://alpha.aergoscan.io
https://alpha.aergoscan.io

aergo-guide Documentation

4.2 Syncing

This setup assumes some basic knowledge about using Docker. Using Docker is the recommended way to run an
Aergo node as it requires minimal configuration and enables you to use Docker features such as logging and restart
policies.

Note: When you run the Docker image named aergo/node for the first time, Docker downloads the latest image
automatically. To update the image to the latest version, run docker pull aergo/node. You can also specify
a specific version by replacing aergo/node with, for example, aergo/node:1.0. Refer to Docker Hub to see a
list of available tags.

4.2.1 Running

This is the main command to run a node syncing with the main Aergo network:

docker run -v $(pwd)/data:/aergo/data -p 7845:7845 -p 7846:7846 aergo/node

The -p argument maps ports from the aergo server inside the container to your host machine. 7846 is for the peer
to peer protocol. 7845 is for the RPC API for connecting clients to the server; you can remove this port binding to
disallow access to the API.

When running this command for the first time, it will create the default genesis block (block number 0). Afterwards it
automatically starts synchronizing.

Note: If your machine is behind a NAT (such as a router), you need to setup manual forwarding of the port 7846 to
allow other peers to sync with your node.

Testnet

To sync with the testnet instead, use the testnet flag:

docker run -v $(pwd)/data:/aergo/data -p 7845:7845 -p 7846:7846 aergo/node aergosvr --
→˓home /aergo --testnet

4.2.2 Configuration

The above commands use default configuration files suitable to connect to officially supported networks. If you want
to override configuration parameters, you can supply a custom config file using a Docker volume, for example:

docker run -v $(pwd)/data:/aergo/data -v $(pwd)/config.toml:/aergo/config.toml -p
→˓7846:7846 aergo/node aergosvr --home /aergo --config /aergo/config.toml

Please refer to Configuration for a detailed explanation of the available settings.

Note: To customize the log format, place an arglog.toml file in the container’s working directory: -v $(pwd)/
arglog.toml:/aergo/arglog.toml.

26 Chapter 4. Using Public Networks

https://hub.docker.com/r/aergo/node/
../running-node/configuration.html
../running-node/configuration.html#logging-options

aergo-guide Documentation

Server key file

Every node is identified by a key and peer id. In the default configuration, a key is generated every time you launch
the docker container. This may not be what you want. You can persist the generated key by adding a volume -v
$(pwd)/auth:/aergo/auth. You can also supply the key manually by placing aergo-peer.key and aergo-peer.id
files in that volume.

Refer to Configuration for details about server keys.

Tip: Instead of binding several volumes, you can use one combined volume, e.g. -v $(pwd)/aergo:/aergo.

Node discovery

Without any specific settings, the server connects to Polaris, registers itself, obtains addresses of other nodes, and
automatically attempts to connect to those nodes. If the server is in a NAT environment or has multiple NICs, additional
settings are required for external nodes to access the server. You have to setup the external address in the external
network connection and set the internal address for binding address.

netprotocoladdr = "211.12.34.56" # external address to which other peer can connect
netprotocolport = 7846
npbindaddr = "192.168.0.2" # no config element or empty string means using same
→˓address as external
npbindport = 17846 # negative number means it is same as external port, in this case
→˓7846

4.3 Creating Accounts

Accounts are identified by addresses that belong to private keys. To own an account, all you need is access to its
private key. Always make sure that nobody except you gains access to your keys!

There are several methods to create accounts.

1. If you are running your own node on your machine, you can create a local account:

aergocli account new

Or using Docker:
docker run --rm --net=host aergo/tools aergocli account new

2. To create an account without a node (aka offline):

aergocli account new --path ./wallet

Or using Docker:
docker run --rm -it -v $(pwd)/wallet:/wallet aergo/tools aergocli account new --
→˓path /wallet

The output shows the address of your new account. It is saved in account/data.db in the given path.

You can export this new account:

4.3. Creating Accounts 27

../running-node/configuration.html
../specs/addresses.html

aergo-guide Documentation

aergocli account export --address your_address --password your_password --path ./
→˓wallet

Or using Docker:
docker run --rm -it -v $(pwd)/wallet:/wallet aergo/tools aergocli account export -
→˓-address your_address --path /wallet

The output shows the encrypted private key belonging to your address which can be imported in other wallets.

Note: When connecting to public nodes, creating accounts on that node is impossible. On public nodes, personal
account features are disabled using personal = False. Always create accounts using local nodes or offline by
one of the methods above.

4.4 Funding Accounts

4.4.1 Testnet

To create transactions on the public testnet, you need an account with a positive balance. After creating an account,
this is how can fund your account for testing.

1. Go to faucet.aergoscan.io, enter your account address, and click Request Tokens.

2. Depending on demand, you need to wait for a moment. If the queue is full, try again a bit later.

3. Check your account on Aergoscan. You should have received some AERGO tokens for your testing purposes.

These AERGO tokens are only valid on the testnet and cannot be sold or bought. They are only useful for developing
and testing applications. Please only request as many tokens as you actually need.

If you have any trouble creating an account or receiving testnet tokens, please ask for help on our Discord channel.

4.4.2 Mainnet

You can swap AERGO ERC-20 tokens to AERGO Mainnet native tokens. Please refer to this blog post: Aergo 2-way
native token swap to ERC-20

4.5 Monitoring

Aergoscan is an explorer for the officially supported networks.

• Mainnet Aergoscan

• Testnet Aergoscan

• Alpha Aergoscan

You can monitor blocks as they get produced and check transactions and accounts.

28 Chapter 4. Using Public Networks

./connecting.html
../running-node/configuration.html
accounts.html
https://faucet.aergoscan.io
https://testnet.aergoscan.io
../community.html
https://medium.com/aergo/aergo-2-way-native-token-swap-to-erc-20-is-live-3e176a661aad
https://medium.com/aergo/aergo-2-way-native-token-swap-to-erc-20-is-live-3e176a661aad
https://mainnet.aergoscan.io
https://testnet.aergoscan.io
https://alpha.aergoscan.io

aergo-guide Documentation

4.6 Snapshots

To quickly bootstrap a new Mainnet full node, you can start syncronizing from a snapshot.

1. Download the latest snapshot from snapshot.aergo.io.

2. Extract the archive, e.g. tar zxvf 672571_20190423.tar.gz.

3. Start the node, pointing it to the extracted data directory: docker run -v $(pwd)/data:/aergo/
data -p 7845:7845 -p 7846:7846 aergo/node

4.7 Troubleshooting

4.7.1 Unavailable personal feature

Failed: rpc error: code = Unavailable desc = Unavailable personal feature

This means that on the node you connected to, personal account features are disabled using the setting personal =
False. This setting is usually used on public nodes, so you cannot use personal account features when connecting to
public nodes. Always create and use accounts using local nodes or offline, e.g. by generating private keys using one
of Aergo’s SDKs. See also: Creating Accounts

4.6. Snapshots 29

https://snapshot.aergo.io
../running-node/configuration.html
./connecting.html
./connecting.html
./accounts.html

aergo-guide Documentation

30 Chapter 4. Using Public Networks

CHAPTER 5

Using Raft consensus

These pages explain how you can configure and manage nodes using raft consensus

Note: RAFT consensus can only be used for private networks.

5.1 Configuration

This page describes the configuration and logging options related to Raft consensus.

See also:

See Config Reference for a detailed explanation of common config reference.

31

../running-node/configuration.html#reference

aergo-guide Documentation

5.1.1 Config Reference

Module Property name Meaning
consen-
sus.raft

name raft node name. name should be unique in cluster

newcluster initialize a new raft cluster if it doesn’t already exist
skipempty skip producing block if there is no transactions in block
heartbeattick heartbeat time(millisec) of raft node
electiontickcount number of heartbeattick to wait before becomeing a candidate without heart-

beat
blockfactoryt-
ickms

interval(millisec) to check if block factory should run new task

blockintervalms block generation interval(millisec).It overrides BlockInterval of consensus
usebackup use backup datafiles for initializing a new cluster or joining an existing clus-

ter
snapfrequency frequency which raft make snapshot with log
recoverbp bp info for initializing a new cluster from backup data files
slownodegap Max difference of chain height for determining if a node is a slow node

5.1.2 Logging options

To see the log related to Raft consensus, add a raft section to arglog.toml.

[raft]
level = "info"

5.2 Configuring a Network Using RAFT

This article describes the process for setting up a network of multiple block producers using RAFT Consensus.

Note: RAFT consensus can only be used for private networks.

A block chain network using RAFT consensus is called a RAFT Cluster. All the settings below assume a case where
a blockchain network consisting of 3 nodes using RAFT consensus.

To create a blockchain network using RAFT consensus, you need to configure the genesis block and config file. Other
settings are the same as the private network configuration using DPoS.

5.2.1 Common Configuration (per machines)

To configure aergo node as a block producer, it requires common configuration as descriped on Configuring a Network
page.

However, additional configuration requires in genesis block and config file.

32 Chapter 5. Using Raft consensus

../running-node/configure-network.html

aergo-guide Documentation

5.2.2 Write configuration files for RAFT

The initial nodes of a new RAFT cluster should be added to the genesis block. Every node in the cluster is a candidate
to be a block producer. Only one of these nodes becomes a leader to create a block. The remaining nodes become
followers who receive instructions from the leader. If a leader crashes, one of the follower nodes becomes the new
leader.

Nodes that cannot be block producers can be used by adding them as fullnodes. These nodes communicate via the
P2P protocol but are not included in the RAFT cluster.

genesis.json (same for all machines)

• RAFT is not supported in the public network, so chain_id should be set to public and maninet should be
set to false.

• Add the nodes to be included in the RAFT cluster to the enterprise_bps entry. Add the name, address,
and peerid of the desired nodes to the enterprise_bps. The address field uses the p2p peer format of the
config file.

• set consensus field to "raft".

• set the bps entry to an empty list.

{
"chain_id":{

"magic": "[insert an identifier string for your network]",
"public": false,
"mainnet": false,
"consensus": "raft"

},
"timestamp": 1548918000000000000,
"balance": {

"[insert address from genesis]": "470000000000000000000000000",
"[insert address from bp01]": "10000000000000000000000000",
"[insert address from bp02]": "10000000000000000000000000",
"[insert address from bp03]": "10000000000000000000000000" },

"bps": [
],
"enterprise_bps": [
{

"name": "[NICKNAME OF BP 01]",
"address": "/ip4/[IP ADDRESS FROM BP 01]/tcp/7846",
"peerid": "[PEER ID FROM BP 01]",

},
{

"name": "[NICKNAME OF BP 02]",
"address": "/ip4/[IP ADDRESS FROM BP 02]/tcp/7846",
"peerid": "[PEER ID FROM BP 02]",

},
{

"name": "[NICKNAME OF BP 03]",
"address": "/ip4/[IP ADDRESS FROM BP 03]/tcp/7846",
"peerid": "[PEER ID FROM BP 03]",

}
]

}

config.toml (one per machine)

5.2. Configuring a Network Using RAFT 33

aergo-guide Documentation

aergo TOML Configration File (https://github.com/toml-lang/toml)
... insert common configuration for block producer ...

[p2p]
npaddpeers = [
]
...
...
configuration for block producer using RAFT
[consensus.raft]
newcluster=true
name="[NICKNAME OF THIS BP]"

Basically, the settings when using DPoS should be applied to the config in the same way. But you don’t need to set
npaddpeers of [p2p]. Nodes use the address value of enterprise_bps to connect to others.

To use RAFT, [consensus.raft] section should be added. name is the current node’s nickname. The name
must be included in the enterprise_bps of the genesis block. When you create a new RAFT cluster, you must set
newcluster to true.

5.2.3 Other settings

To change block creation cycle

[consensus]
blockinterval=[insert value in seconds]

To change heartbeat cycle

[consensus.raft]
heartbeattick=[insert value in milliseconds]

To skip creating empty block

[consensus.raft]
skipempty=true

5.3 Dynamic Membership Changement

Blockchain that uses the RAFT consensus can add or remove members dynamically through enterprise transactions.
You do not have to restart running nodes or change the config file at this time. For a description of enterprise transac-
tions, see transacion-types.

This article assumes the Aergo blockchain using raft consensus consisting of 3 nodes.

5.3.1 Abstaction

Note: Membership changes must be made after the completion of one. When adding a new node, do not add
another node again until blockchain synchronization is over, since the new node becomes unavailable until the chain
is synchronized and up to date. If more than half of the nodes are out of sync, the cluster stops.

34 Chapter 5. Using Raft consensus

../specs/transactions.html#transaction-types

aergo-guide Documentation

Validation

When executing a membership change transaction, leader node checks if the current cluster status is changeable.

• When adding a new node

If any node is not properly synchronized in the whole network, it will fail. The node is either in a shutdown state
or a state where synchronization is slowed down due to a failure.

• When removing a node

If the cluster can be stopped when the node is excluded, the delete request will fail. Deletion to a failed node
always succeeds.

Prework

You need set up and unlock ENTERPRISE ADMIN ACCOUNT to execute commands with Enterprise
Transaction. See the page transacion-types.

5.3.2 Add Member

Execute Add Node command

Send an enterprise transaction to one of the cluster nodes.

aergocli -p [RPC PORT] contract call --governance [ADMIN ACCOUNT] aergo.enterprise
→˓changeCluster [{ "command": "add", "name": "[NODE NAME]", "address": "[PEER
→˓ADDRESS]", "peerid":"[PEER ID]" }]

example> aergocli -p 10001 contract call --governance
→˓AmQJ6HTxMzq5eios54xubENE2wAe4puF3GDuaFxBzXkWa4KpfnWr aergo.enterprise changeCluster
→˓[{ "command": "add", "name": "raft4", "address": "/ip4/127.0.0.1/tcp/11004",
→˓"peerid":"16Uiu2HAmQti7HLHC9rXqkeABtauv2YsCPG3Uo1WLqbXmbuxpbjmF" }]

Check the command result

Query enterprise transaction results on one of the cluster nodes. The hash of enterprise transaction must be given as
an argument.

aergocli -p [RPC PORT] enterprise tx "[ENTERPRISE TX HASH]" --timeout=[VALUE IN
→˓SECONDS]

The changed cluster status can be checked using getconsensusinfo RPC. "Total" represents the total number
of nodes and "Bps" contains the block producer list.

aergocli -p 10001 getconsensusinfo

Write configuration for a new node (new node only)

In the config file of the node to add, set the peer addresses of the block producers to the [p2p] npaddpeers. If
possible, register the peer address of all members currently registered in the raft cluster. However if necessary, only
one connectable node can be set.

5.3. Dynamic Membership Changement 35

../specs/transactions.html#transaction-types

aergo-guide Documentation

[p2p]
...
npaddpeers = [
"/ip4/[IP ADDRESS FROM BP 01]/tcp/7846/p2p/[PEER ID FROM BP 01]",
"/ip4/[IP ADDRESS FROM BP 02]/tcp/7846/p2p/[PEER ID FROM BP 02]",
"/ip4/[IP ADDRESS FROM BP 03]/tcp/7846/p2p/[PEER ID FROM BP 03]"
]
...

[consensus.raft]
newcluster=false
name="[NICKNAME OF NEW BP]"

Running

See the page Configuring a Network to start a new node.

Note: You should wait for the added node to finish synchronizing with the existing blockchain.

• Check if the new node recognized the raft leader node

If the leader node is recognized, ConsensusInfo.Status.Leader is set to one of the node names.

aergocli -p 10004 blockchain
> {"Hash":"3ivEw2o97WkpEvarBkVEYWCAQXhQ7BpHwmzs2L4WXUzJ","Height":7302,
→˓"ConsensusInfo":{"Type":"raft","Status":{"Leader":"raft1","Total":3,
→˓"Name":"raft4","RaftId":"dd44cf1a06727dc5","Status":null}},"ChainIdHash
→˓":"A9gpZUsFS9BVEfpUy6gbJ7YtGuHsYAmzamWkhDo54cak"}

• Make sure the BlockChain Height of the new node matches the Leader

aergocli -p [RPC PORT OF LEADER] blockchain
aergocli -p [RPC PORT OF NEW NODE] blockchain

5.3.3 Remove Member

Get RAFT ID to remove

To delete a node, you should get RAFT ID of the node. RAFT ID is a value assigned after a node is added to RAFT.
It is a value to idenity each node in RAFT Consensus.

You can get it in the result of blockchain RPC. In the example above, dd44cf1a06727dc5 is the Raft ID of the “raft4”
node.

aergocli -p 10004 blockchain
> {"Hash":"...","Height":7302,"ConsensusInfo":{"Type":"raft","Status":{"Leader":"raft1
→˓","Total":4,"Name":"raft4","RaftId":"dd44cf1a06727dc5","Status":null}},"ChainIdHash
→˓":"..."}

Run enterprise transaction

36 Chapter 5. Using Raft consensus

../running-node/configure-network.html#running

aergo-guide Documentation

aergocli -p [RPC PORT] contract call --governance [ADMIN ACCOUNT] aergo.enterprise
→˓changeCluster [{ "command": "remove", "id": "[RAFT ID]" }]

example> aergocli -p 10001 contract call --governance
→˓AmQJ6HTxMzq5eios54xubENE2wAe4puF3GDuaFxBzXkWa4KpfnWr aergo.enterprise changeCluster
→˓'[{ "command": "remove", "id": "dd44cf1a06727dc5" }]'

Check result of enterprise transaction

As with adding a node case, you should check “Total” and “Bps” in the results of the getconsensusinfo RPC.

aergocli -p 10001 getconsensusinfo

Wait shutdown removed node

If Enterprise Transaction is executed on the node to be deleted, the node terminates itself.

5.3.4 Add Member with Backup

After adding a new node, it takes a long time to synchronize the existing blockchain. To reduce this time, you can add
a new node by using backup data files obtained from existing member nodes. There is no conflict because the new
node resets all the cluster-related information from the given backup data files at the first startup.

Prepare backup datafiles

The bakcup datafiles can be obtained by shutting down an existing node and copying the data directory.

Note: Since the blockchain is already created in the data file, there is no need to create the genesis block.

Write Configuration file

When using backup data files, usebackup must be set to true. Set the backup data directory to datadir field.

datadir="[copied data directory]"

[p2p]
...
npaddpeers = [
"/ip4/[IP ADDRESS FROM BP 01]/tcp/7846/p2p/[PEER ID FROM BP 01]",
"/ip4/[IP ADDRESS FROM BP 02]/tcp/7846/p2p/[PEER ID FROM BP 02]",
"/ip4/[IP ADDRESS FROM BP 03]/tcp/7846/p2p/[PEER ID FROM BP 03]"
]
...

[consensus.raft]
newcluster=false

usebackup=true
name="[NICKNAME OF NEW BP]"

The rest of the process is the same as adding members without using backup.

5.4 Recovery

If more than half of the cluster’s nodes become unrecoverable, the raft cluster can no longer delete or add any node.
This is because more than half of nodes cannot agree to the change.

5.4. Recovery 37

aergo-guide Documentation

In this case, if you want to keep the data of BlockChain as it is, you can create a new cluster by using backup of
existing node data. However, RAFT cluster information cannot be recycled.

This is called recovery.

There are some differences between recovery and general cluster creation.

1. When creating a cluster using the recovery function, there must be one initial member node.

2. Since genesis block is already created in blockchain, you should set initial node in config file instead of genesis
block.

3. If you want to configure N-node clusters, you need to add members dynamically from the second member.

The cluster related information is deleted in the backup files. The newly created cluster creates a block following
blockchain that has already created.

5.4.1 Prepare backup datafiles

Copy backup datafiles from the old node to storage on the new node.

5.4.2 Write Configuration file(only initial node)

datadir="[copied data directory]"

[p2p]
...
npaddpeers = [
]
...

[consensus.raft]
newcluster=true
usebackup=true
name="[NICKNAME OF NEW BP]"
recoverbp={name="[NICKNAME OF NEW BP]",address="/ip4/[IP ADDRESS FROM BP 01]/tcp/7846
→˓",peerid="[PEER ID FROM NEW BP 01]"}

• To create a new cluster, you need to set newcluster to true.

• Set usebackup to true to use backup data files.

• Set recoverbp to the member of the new cluster. At this time, member must only be one node.

5.4.3 Running a node

Start the node. After that, add nodes one by one using Dynamic membership change.

38 Chapter 5. Using Raft consensus

CHAPTER 6

Smart Contracts

Aergo provides its own smart contract platform for implementing various business logic on the blockchain.

Currently, you can create smart contracts using the Lua programming language.

6.1 Lua

To create smart contracts for Aergo, you can use the Lua scripting language.

Lua is a powerful, efficient, lightweight, embeddable scripting language. It has a simple procedural syntax with
a powerful data description structure. Lua supports a variety of programming methods: procedural programming,
object-oriented programming, functional programming.

We use LuaJIT 2.1.0 as the VM. LuaJIT is a Just-In-Time Compiler (JIT) for the Lua programming language.

You can learn the Lua programming language through the following documents:

• Lua 5.1 Reference Manual

• Programming in Lua (The second edition was aimed at Lua 5.1)

Table of contents

6.1.1 Hello World

This is the most basic lua smart contract to store and retrieve states in aergo. You can save a name on the blockchain
with the contract call function. And you can print ‘hello . . . ’ with the query function.

-- Define global state variables
state.var {

Name = state.value(),
My_map = state.map()

}

(continues on next page)

39

http://www.lua.org/about.html
http://luajit.org/luajit.html
http://www.lua.org/manual/5.1/
http://www.lua.org/pil/

aergo-guide Documentation

(continued from previous page)

-- Initialize the state variables
function constructor()
-- a constructor is called only once at the contract deployment
Name:set("world")
My_map["key"] = "value"

end

-- Update the name
-- @call
-- @param name string: new name
function set_name(name)

Name:set(name)
end

-- Say hello
-- @query
-- @return string: 'hello ' + name
function hello()

return "hello " .. Name:get()
end

-- register functions to expose
abi.register(set_name, hello)

Tutorial

This is explained based on using cli. Variables used in this example are

• Account to deploy and execute a contract: AmPbWrQbtQrCaJqLWdMtfk2KiN83m2HFpBbQQSTxqqchVv58o82i

• cli commands in this page need a aergosvr with enable personal feature

Check Account and Balance

First, you need an account with enough balance to deploy and execute smart contracts. (If you don’t) Import or Unlock
Account to aergo server.

Compile Contract

Copy above code and save it to a file (e.g. helloword.lua). And Compile using the aergoluac compiler

./aergoluac --payload helloworld.lua
37mGLDoCPNDQw7HbCG5WPfcM3E3cLhqhgE2V2UJKwQp9QZ5nJhT14nkCdGFcmN91fewB2ZuMZ5NWJUPyD4G4G2beaTeE1cigLzyNdGuuU4Y7cY2A6MUMq5weoAGGJdyf6PUfzgQ7k1cwjjDRe7P8bN5tNR8xxiibYk1hoeV2fuG4ZGVUwosutqFYePonLAtvK57N2MphJWVkTVxkySkXBnKywCiKB2pqv93VVQbBepYrUwURAeaj5aGhuFa8sxbSjuZfrvdy3i7dAEesf1jPHyeoN6CHWEB3teQJHUUh5K89p8vZ7nXKYPSa7MbzEg3YCUx8uLYmkJPjqA5YT1dxcKWCmHV4M2nYxmv3h9v3viPFkkFuMdpJboCTV2iqkMr3robxT6okSJtDdVUk2PprZKuiipS6tbKmDmxuicJqFvtP653qdWpu4tvWQDBb5k3UJcMTcEDdrjqqtNcE8dujFxr4TWfDu9Nwb4FedLrb5z7CoRWvXi5eZBkujJdDBm5MowamWLy9Pu6UmjAmBHfkDpQiagocrFzZrDPvNbaon8r5Rph8gFHAzwaUdM3dpt3dghePsiH1jbz8j93aMhMxgE6Lgap

Deploy Contract

With the payload generated above, Deploy contract

./aergocli contract deploy AmPbWrQbtQrCaJqLWdMtfk2KiN83m2HFpBbQQSTxqqchVv58o82i --
→˓payload 37mGLDoCPNDQw7HbCG5WPfcM3E3cLhqhgE2V2UJK
wQp9QZ5nJhT14nkCdGFcmN91fewB2ZuMZ5NWJUPyD4G4G2beaTeE1cigLzyNdGuuU4Y7cY2A6MUMq5weoAGGJdyf6PUfzgQ7k1cwjjDRe7P8bN5tNR8xxiibYk1hoeV2fuG4ZGVUwosutqFYePonLAtvK57N2MphJWVkTVxkySkXBnKywCiKB2pqv93VVQbBepYrUwURAeaj5aGhuFa8sxbSjuZfrvdy3i7dAEesf1jPHyeoN6CHWEB3teQJHUUh5K89p8vZ7nXKYPSa7MbzEg3YCUx8uLYmkJPjqA5YT1dxcKWCmHV4M2nYxmv3h9v3viPFkkFuMdpJboCTV2iqkMr3robxT6okSJtDdVUk2PprZKuiipS6tbKmDmxuicJqFvtP653qdWpu4tvWQDBb5k3UJcMTcEDdrjqqtNcE8dujFxr4TWfDu9Nwb4FedLrb5z7CoRWvXi5eZBkujJdDBm5MowamWLy9Pu6UmjAmBHfkDpQiagocrFzZrDPvNbaon8r5Rph8gFHAzwaUdM3dpt3dghePsiH1jbz8j93aMhMxgE6Lgap
1 : FPqA3kNQHoVXqKJv8JNpUSsh8F8id87yvRr5UzQFoCcH TX_OK

40 Chapter 6. Smart Contracts

aergo-guide Documentation

Get receipt of contract

Look up the actual contract address with the transaction ID above.

./aergocli receipt get FPqA3kNQHoVXqKJv8JNpUSsh8F8id87yvRr5UzQFoCcH
{
"BlokNo": 317,
"BlockHash": "48zceVwBZt5dpzuEFMtJB9icPXUu7YG1Xkxvw5N92yFW",
"contractAddress": "AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU",
"status": "CREATED",
"ret": {},
"txHash": "AWeaoCTpohuQpBMTFaW3qFpZqWwuTehXA8ZkAX59UjMV",
"txIndex": 0,
"from": "AmPbWrQbtQrCaJqLWdMtfk2KiN83m2HFpBbQQSTxqqchVv58o82i",
"to": "",
"usedFee": 10,
"events": []

}

If the status is not ‘CREATED’, it may not be included in the block yet, or there may be an error. Wait a while until
the transaction is included in the block. Or check the server’s error log.

Get ABI of contract

Look up ABI of contract with the contract address above.

./aergocli contract abi AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU
{
"version": "0.2",
"language": "lua",
"functions": [
{
"name": "hello"
},
{
"name": "set_name",
"arguments": [
{
"name": "name"

}
]
},
{
"name": "constructor"
}

],
"state_variables": [
{
"name": "Name",
"type": "value"
},
{
"name": "My_map",
"type": "map"
}

(continues on next page)

6.1. Lua 41

aergo-guide Documentation

(continued from previous page)

]
}

Query Initial State

You can query the generated contract in the following way.

./aergocli contract query AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU hello
value:"\"hello world\""

You can see that the name ‘world’ assigned by the constructor is output.

Call Contract

You can change the name recorded in the block chain as follows:

./aergocli contract call AmPbWrQbtQrCaJqLWdMtfk2KiN83m2HFpBbQQSTxqqchVv58o82i
→˓AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU
set_name '["aergo"]'

1 : 8mcuEFNxNCF6h4Q3FJk3mGN356R1AmWgGptAgJHNfaKs TX_OK

Query Changed State

If you look at the results again, it has changed.

./aergocli contract query AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU hello
value:"\"hello aergo\""

Query contract variable with merkle proof

Value

./aergocli contract statequery AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU
→˓Name --compressed

Map

./aergocli contract statequery AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU
→˓My_map key --compressed

Array

./aergocli contract statequery AmfzX3SHXVTBU9NSEWXaLxxjN11KsUpm1Gb3YjF7kmsHrgmL41WU
→˓array_name array_index --compressed

By default, the returned state is the one at the latest block, but you may specify any past block’s state root.

./aergocli contract statequery AmhbdCEg4TUFm6Hpdoz8d81eSdzRncsekBLN3mYgLCbAVdPnu1MZ
→˓var_name --root "9NBSjkcNTdE5ciBxfb52RmsVW7vgX5voRsv6KcosiNjE"

42 Chapter 6. Smart Contracts

aergo-guide Documentation

6.1.2 Programming Guide

Lua provides useful functions and libraries. So you can easily create smart contracts using these functions.

Please refer to the Lua Reference Manual for detailed syntax, explanation, basic built-in functions and libraries.

Aergo currently uses Lua version 5.1.

Restrictions

Because Lua smart contract is performed by the aergo system, OS related functions including input/output are not
provided for stability and security.

These are the base functions that are not available:

print, dofile, loadfile, module, require

You can replace print with system.print.

And you can use import instead of require. import is not a Lua syntax.

Use SHIP to build and deploy smart contracts using multiple files.

These are the default libraries that are not available:

coroutine, io, os, debug, jit

The string, math, bit and table packages are available. All functions from these packages are available, except
for the math package. These are the functions available in the math package:

abs, ceil, floor, pow, max, min

There are no restrictions on literals, expressions and statements.

After the version 2.0, the Lua virtual machine can internally check the block execution timeout (about 0.25s ~ 0.75s
per block) and return an error upon block execution timeout. The transaction which causes timeout is not included
into the block like the pre-2.0 version. Additionally, if it is the only transaction in the block, it will be evicted from the
mempool for the stable operation of the block producer.

Libraries

We provide libraries for smart contract as follows:

• Blockchain API

– system module

– contract module

– state module

– db module

– abi module

• Utils

– json module

– crypto module

– bignum module

You can find detailed descriptions for libraries on this page

6.1. Lua 43

http://www.lua.org/manual/5.1/
https://github.com/aergoio/ship/wiki
reference.html

aergo-guide Documentation

Smart Contract

Layout

import "./path/to/library"

state.var {
Value = state.value(),
Map = state.map(),
Array = state.array(10)

}

function constructor(init_value)
Value:set(init_value)

end

function contract1(name, id)
Map["name"] = name
Map["ID"] = id

end

function contract2()
local sum = 0
for i, v in state.array_pairs(Array) do
if v ~= nil then

sum = sum + v
end

end
return sum

end

abi.register(contract1, contract2) -- , contract3, ...

import

This replaces the require function.

It allows you to divide and develop one smart contract into multiple modules (files).

This is not a Lua feature. You should use SHIP to build and deploy smart contracts using multiple files.

state variable

The state.var function defines global state variables.

Three types of state variables can be defined:

value

This type stores any Lua value.

You can define a state value with the syntax var_name = state.value(). It has get and set methods for
reading and writing data.

44 Chapter 6. Smart Contracts

https://github.com/aergoio/ship/wiki

aergo-guide Documentation

var_name:set("data")
local data = var_name:get()

map

The type map implements associative arrays.

It can be indexed only with string, but the value of a map element can be of any type.

You can define a state map with the syntax var_name = state.map(). The index operator is used for reading
and inserting elements.

You can delete an element of a map by using the delete method, with the syntax var_name:delete(key)

state.var {
Map_var = state.map()

}

function contract_func()
Map_var["name"] = "kslee"
Map_var["age"] = 38
-- ...
local age = Map_var["age"]

end

function delete_elem(key)
Map_var:delete(key)

end

The state map supports multiple dimensions, with syntax var_name = state.map(dimension)

The multi index operator is used for reading and inserting elements.

state.var {
Map_var = state.map(2)

}

function contract_func()
Map_var["kslee"]["age"] = 38
Map_var["kslee"]["birth"] = "1999/09/09"
-- ...
local kslee = Map_var["kslee"]
local age = kslee["age"]
local birth = kslee["birth"]

kslee["birth"] = "1970/10/9"
end

Restrictions

• max dimensions: 5

• it does not support setting intermediate dimension element, like this:

6.1. Lua 45

aergo-guide Documentation

state.var {
Map_var = state.map(2)
person_var = state.map()

}

function contract_func()
person_var["age"] = 38
person_var["birth"] = "1999/09/09"
Map_var["kslee"] = person_var -- NOT SUPPORTED!

end

array

The type array is a fixed-length ordinary array.

It can be indexed only with integer, but the value of an array element can be of any type. The index starts at 1.

You can define a state array with the syntax var_name = state.array(size)

The index operator is used for reading and inserting elements.

state.var {
Arr_var = state.array(3)

}

function contract()
Arr_var[1] = 1
Arr_var[2] = 2
Arr_var[3] = 3

local sum1 = 0
for i, v in Arr_var:ipairs() do
if v ~= nil then

sum1 = sum1 + v
end

end

local sum2 = 0
for i = 1, #Arr_var do
if Arr_var[i] ~= nil then
sum2 = sum2 + Arr_var[i]

end
end

if sum1 == sum2 then
-- ...
end

end

The state array supports multiple dimensions, with syntax var_name = state.array(1st_ncount,
2nd_ncount,....)

The multi index operator is used for reading and inserting elements.

state.var {
-- declare 2 dimensional array

(continues on next page)

46 Chapter 6. Smart Contracts

aergo-guide Documentation

(continued from previous page)

Arr_var = state.array(2, 3)
}

function contract_func()
Arr_var[1][1] = 1
Arr_var[1][2] = 2
Arr_var[1][3] = 3

-- ...
local Arr2 = Arr_var[2]
Arr2[1] = 4
Arr2[2] = 5
Arr2[3] = 6

local sum1 = 0
for i, v in Arr_var:ipairs() do
for j, k in v:ipairs() do
if k ~= nil then

sum1 = sum1 + k
end

end
end

local sum2 = 0
for i = 1, #Arr_var do
for j = 1, #Arr_var[i] do
if Arr_var[i][j] ~= nil then

sum2 = sum2 + Arr_var[i][j]
end
end

end

if sum1 == sum2 then
-- ...
end

end

Restrictions

• max dimensions: 5

• it does not support setting intermediate dimension element, like this:

state.var {
Marr_var = state.map(2,3)
Arr_var = state.map(3)

}

function contract_func()
Arr_var[1] = 1
Arr_var[2] = 2
Arr_var[3] = 3

Marr_var[1] = Arr_var -- NOT SUPPORTED!
end

6.1. Lua 47

aergo-guide Documentation

Note: The state variables are just syntax sugar that replace system.getItem(), system.setItem() func-
tions.

The fields of state variables that are directly modified cannot update the state db.

See InvalidUpdateAge() and ValidUpdateAge() functions in the example.

state.var{
Person = state.value()

}

function constructor()
Person:set({ name = "kslee", age = 38, address = "blahblah..." })

end

function InvalidUpdateAge(age)
Person:get().age = age

end

function ValidUpdateAge(age)
local p = Person:get()
p.age = age
Person:set(p)

end

function GetPerson()
return Person:get()

end

abi.register(InvalidUpdateAge, ValidUpdateAge, GetPerson)

Private functions

These functions cannot be accessed from outside the smart contract. You can use them as helper functions.

Exported functions

These are the functions that can be called from contract call and query commands. They should be registered using
abi.register().

You can restrict who can call these functions by checking the caller using system.getOrigin() or system.
getSender(). Example:

function my_restricted_function()
assert(system.getOrigin() == system.getCreator(), "permission denied")
...

end

abi.register(my_restricted_function)

Special functions

48 Chapter 6. Smart Contracts

aergo-guide Documentation

constructor

The constructor function is executed only once during the contract deployment. It does not need to be exported
with abi.register().

It can have arguments, that should be passed at the contract deployment.

It can also write to the contract state, generally initializing it. Example:

state.var {
my_number = state.value()

}

function constructor(value)
my_number:set(value)

end

...

default

The default function is called when the function name cannot be found or when the transaction has no call infor-
mation. It does not need to be exported through abi.register(). default is used internally by the VM. You
should not use default for any other purpose.

You can define a default function as follows:

...
function default()
...

end
...

You can call this default function. This happens when a transaction of type call is sent to the contract without
information about which function to call.

./aergocli contract call <sender> <contract>

payable

The payable is a property of a function. Only payable functions can receive Aergos sent from a sender. We can
make a payable function using abi.payable(). payable functions are automatically exported. Therefore, you
do not need to register them using abi.register(). constructor and default are not payable functions by
default. They can be made payable functions by using abi.payable().

On the example below we can call the ReceiveAergo function with aergo, but we cannot call the NotReceiveAergo
function with aergo:

...
function ReceiveAergo()
...

end

function NotReceiveAergo()

(continues on next page)

6.1. Lua 49

aergo-guide Documentation

(continued from previous page)

...
end

abi.register(NotReceiveAergo)
abi.payable(ReceiveAergo)

./aergocli contract call --amount=10 <sender> <contract> ReceiveAergo # success

./aergocli contract call --amount=10 <sender> <contract> NotReceiveAergo # fail

view

The view is a property of a function. Functions can be declared view in which case they promise not to modify
the state (send aergo, emit event, set state, etc. . .). We can make a view function using abi.register_view().
register_view functions are automatically exported. Therefore, you do not need to register them using abi.
register().

On the example below we cannot call the sendAergo function:

...
function sendAergo()
contract.send(addr, "1 aergo")

end

abi.register_view(sendAergo)

./aergocli contract call <sender> <contract> sendAergo # fail

SQL

Aergo smart contract has db library that supports SQL features.

Note: The db package is currently only available on private networks and publicly on SQL TestNet.

The code below is an example of creating a table and inserting a row using db.exec()

-- creates a customer table
function createTable()
db.exec([[create table if not exists customer(

id text,
passwd text,
name text,
birth text,
mobile text

)]])
end

-- insert a row to the customer table
function insert(id, passwd, name, birth, mobile)
db.exec("insert into customer values (?, ?, ?, ?, ?)",

id, passwd, name, birth, mobile)
end

The db.query() function returns a result set. You can fetch rows from the result set.

50 Chapter 6. Smart Contracts

https://sqltestnet.aergoscan.io/

aergo-guide Documentation

function query(name)
local rt = {}
local rs = db.query("select * from customer where name like '%' || ? || '%'", name)
while rs:next() do
local col1, col2, col3, col4, col5 = rs:get()
local item = {

id = col1,
passwd = col2,
name = col3,
birth = col4,
mobile = col5

}
table.insert(rt, item)

end
return rt

end

You can also use prepared statements:

function insert(id , passwd, name, birth, mobile)
stmt = db.prepare("insert into customer values (?, ?, ?, ?, ?)")
stmt:exec(id, passwd, name, birth, mobile)

end

function insert_contacts(contacts)
local stmt = db.prepare("insert into contacts (name, email) values (?, ?)")
for _,contact in ipairs(contacts) do
stmt:exec(contact.name, contact.email)

end
end

function query_names(ids)
local names = {}
local stmt = db.prepare("select name from customer where id=?")
for _,id in ipairs(ids) do
local rs = stmt:query(id)
if rs:next() then

table.insert(names, rs:get())
else

table.insert(names, "")
end

end
return names

end

.. warning:: DO NOT concatenate values when building SQL commands!

This would make your smart contract vulnerable to `SQL injection` attacks.

These are bad examples that should *NOT* be used:

-- WRONG! AVOID THIS:
db.exec("insert into customer values ('" .. id .. "', '"

.. passwd .. "', '"

.. name .. "', '"

.. birth .. "', '"

.. mobile .. "')")

(continues on next page)

6.1. Lua 51

aergo-guide Documentation

(continued from previous page)

-- WRONG! AVOID THIS:
local rs = db.query("select * from customer where id like '%'" .. id .. "'%'")

Restrictions

LiteTree is used as the SQL processing engine for Aergo smart contracts. LiteTree is implemented based on SQLite.

Detailed SQL usage can be found at https://sqlite.org/lang.html and https://sqlite.org/lang_corefunc.html

However, we do not provide full SQL functionality. There are some limitations due to stability and security.

Data types

Allow only SQL datatypes corresponding to Lua strings and numbers(int, float).

• text

• integer

• real

• null

• date, datetime

SQL statements

You can execute the following SQL statements. However, DDL and DML can not be run on smart contract queries.

• DDL

– TABLE: ALTER, CREATE, DROP

– INDEX: CREATE, DROP

• DML

– INSERT, UPDATE, DELETE, REPLACE

• Query

– SELECT

functions

Here is a list of functions that are not available:

• load_XXX functions

• random function

• sqlite_XXX functions

• data and time related functions can be used, except now timestring and localtime modifier.

A list of other functions and descriptions is available via the links below.

• basic : https://www.sqlite.org/lang_corefunc.html

• data and time : https://www.sqlite.org/lang_datefunc.html

• aggregation : https://www.sqlite.org/lang_aggfunc.html

52 Chapter 6. Smart Contracts

https://github.com/aergoio/litetree

aergo-guide Documentation

contraints

You can use the following contraints:

• NOT NULL

• DEFAULT

• UNIQUE

• PRIMARY KEY (FOREIGN KEY)

• CHECK

Tools

aergoluac

aergoluac is a compiler for Lua smart contracts.

• Reference

aergocli

aergocli is a command line tool that interfaces with the GRPC exposed by aergosvr.

It provides smart contract-related commands as follows:

• contract deploy/call/query/abi/statequery

• receipt get

• event list/stream

• Reference

brick

Toy for Contract Developers. You can use it to test smart contracts.

• Reference

Style conventions

It is good to adopt a consistent coding style for readability. We recommend the Lua style guide.

6.1.3 Reference

Overview

Aergo uses Lua, a lightweight scripting language, as its smart contract language. The following is an example of a
simple coinstack smart contract written in Lua that stores key-value pairs in a blockchain state store and reads the
values:

6.1. Lua 53

../../tools/aergoluac.html
../../tools/aergocli.html
https://github.com/aergoio/aergo/tree/master/cmd/brick
https://github.com/luarocks/lua-style-guide

aergo-guide Documentation

-- Storing key-values in the state store
function set(key, value)

system.setItem(key, value)
end

-- Returns the value corresponding to the key in the state store
function get(key)

return system.getItem(key)
end

-- Output the hash value of the previous block. The output is printed on the server
→˓log.
function printPrevBlock()

system.print(system.getPrevBlockHash())
end

-- Functions to be called for contract declare as abi
abi.register(set, get, printBlock)

To read and write data on a blockchain within a contract, you must use the system package. In the above example, the
smart contract provides the function to access the key-value repository through the setItem and getItem functions of
the system package and store the data permanently. In addition, a simple debug message can be output to the node’s
log file via the print function.

system package

This packages provides blockchain information and store/get state

getBlockheight()

This function returns the block number that contains the current contract transaction.

getPrevBlockHash()

This function returns the hash of the previous block

getTimestamp()

This function returns the creation start time of the block that contains current contract transaction.

getTxhash()

This function returns the id of the current contract transaction.

getAmount()

This function returns number of AER sent with contract call. Return type is string.

54 Chapter 6. Smart Contracts

aergo-guide Documentation

isFeeDelegation()

This function returns whether the transaction is using fee delegation.

getContractID()

This function returns the current contract address.

getCreator()

This function returns creator address of current contract

getOrigin()

This function returns sender address of current transaction

getSender()

This function returns caller address of current contract

isContract(address)

This function return if address is contract then true else false. when address is invalid then raise error

setItem(key, value)

This function sets the value corresponding to key to the storage belonging to current contract

Restrictions:

• key type can only be string (number type is implicitly converted to string)

• value type can be: number, string, table

getItem(key)

This function returns the value corresponding to key in storage belonging to current contract

• If there is no value corresponding to key, it returns nil.

print(args. . .)

This function print args with json format at console log in node running current contract

contract package

This packages provides contract operation

6.1. Lua 55

aergo-guide Documentation

send(address, amount)

This function transfers an amount of coins from this contract to the given address. The Amount can be in string,
number or bignum formats. The default unit is AER.

contract.send("Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod", 1)
contract.send("Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod", "1 aergo 10 gaer
→˓")
contract.send("Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod", bignum.number(
→˓"999999999999999"))

deploy(code, args. . .)

The deploy function creates a contract account using code and args, and returns the corresponding address and the
returned value(s) from the constructor function.

If you use an existing address instead of code, it will be deployed with the code from the given address.

In addition, you can call the value function to send coins to the new contract. The value function accepts a string, a
number or a bignum as the argument like the send function.

src = [[
function hello(say)

return "Hello " .. say .. system.getItem("made")
end
function constructor(check)

system.setItem("made", check)
end
abi.register(hello)
abi.payable(constructor)

]]
addr = contract.deploy.value("1 aergo")(src, system.getContractID())

call(address, function_name, args. . .)

The call function executes a function on another contract and returns the result. The call is executed in the context of
the target contract’s state.

In addition, we can call the value function to send an amount of coins to the target address. The value function
accepts a string, a number or a bignum as the argument like the send function.

contract.call("Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod", "inc", 1)
contract.call.value(10)("Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod", "inc",
→˓ 2)

Restrictions

Before the fee system for smart contracts is applied to the mainnet, there are the following restrictions:

• limit the call depth of call or delegatecall in one transaction to 5

56 Chapter 6. Smart Contracts

aergo-guide Documentation

delegatecall(address, function_name, args. . .)

The delegatecall function loads the code from the target address and executes it in the context of the calling contract.

Storage, current address and balance still refer to the calling contract, only the code is taken from the called address.

Notice that the call can change the state of the current contract.

This is used to implement the “library” feature, with reusable library code.

contract.delegatecall("Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod", "inc",
→˓1)

Restrictions

Before the fee system for smart contracts is applied to the mainnet, there are the following restrictions:

• limit the call depth of call or delegatecall in one transaction to 5

pcall(fn, args. . .)

It is an error handling function that works just like pcall in Lua. For both functions, when the called function fails,
no error is raised and the contract execution continues. It just returns false to indicate the failure.

The difference is that with contract.pcall when an error occurs the state and balance modified by the called
function rolls back to the state before the call. This does not happen when using just pcall.

If no pcall or contract.pcall is used, then the contract execution stops on exceptions.

success = contract.pcall(contract.send,
→˓"Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod", "1 AERGO")
if success == false then

return 0
end
return 1

balance(address)

This function returns the balance of the given address in AER. The return type is string. If address is nil then it returns
the balance of the current address.

contract.balance() -- get balance of current contract address
contract.balance("Amh4S9pZgoJpxdCoMGg6SXEpAstTaTQNfQdZFsE26NpkqPwmaWod")

event(eventName, args. . .)

This function fires an event containing eventName and args. The event is recorded in the blockchain in the
contract result receipt. It is also broadcasted to all the listening applications connected to the blockchain network that
have subscribed to this event.

The user can search for events that happened in the past and also receive notifications of new events by using RPC.

6.1. Lua 57

aergo-guide Documentation

contract.event("send", 1, "toaddress")

Restrictions

Before the fee system for smart contracts is applied to the mainnet, there are the following restrictions:

• limit length of event name to 64

• limit size of event argument to 4k

• limit the number of events in one transaction to 50

Examples: searching for event and receiving notification with aergocli

Searching for events with name “send” from the contract address Amhbd-
CEg4TUFm6Hpdoz8d81eSdzRncsekBLN3mYgLCbAVdPnu1MZ

./aergocli event list --address AmhbdCEg4TUFm6Hpdoz8d81eSdzRncsekBLN3mYgLCbAVdPnu1MZ -
→˓-event send

Searching for events where argument 0 is 1 and argument 1 is “toaddress” in the contract address Amhbd-
CEg4TUFm6Hpdoz8d81eSdzRncsekBLN3mYgLCbAVdPnu1MZ

./aergocli event list --address AmhbdCEg4TUFm6Hpdoz8d81eSdzRncsekBLN3mYgLCbAVdPnu1MZ -
→˓-argfilter '{"0":1, "1":"toaddress"}'

Getting notifications for events with name “send” for contract Amhbd-
CEg4TUFm6Hpdoz8d81eSdzRncsekBLN3mYgLCbAVdPnu1MZ

./aergocli event stream --address
→˓AmhbdCEg4TUFm6Hpdoz8d81eSdzRncsekBLN3mYgLCbAVdPnu1MZ --event send

stake(amount), unstake(amount), vote([bps,. . .]), voteDao(arg1, arg2,. . .)

You can do governance (stake, unstake, vote, voteDao) in the smart contract, using the contract address

contract.stake("1 aergo")
contract.vote(["<bp1 address>", "<bp2 address>"....)
contract.voteDao("gasprice", "5")
contract.unstake("1 aergo")

Built-in Functions

Lua provides the language itself as a useful function and basic package. It provides useful functions such as string man-
agement functions, so you can easily create smart contracts using these functions. Please refer to the Lua Reference
Manual for detailed syntax, explanation, basic built-in functions and packages.

Since Lua Smart Contract is performed in Blockchain, OS related functions including input / output are not provided
for stability and security.

Here is a list of the main functions that are not available.

58 Chapter 6. Smart Contracts

aergo-guide Documentation

print, loadstring, dofile, loadfile and module

Here is a list of the default packages that are not available.

coroutine, io, os and debug

The string, math, and table packages are available. However, you can not use the random, randomseed functions in
the math package.

DB package

If the smart contract is handling simple types of data, it would not be difficult to implement using only the basic APIs
(getItem(), setItem()). However, complex data structures, data association, scope queries, filtering, sorting, and other
features require the complexity and size of the data logic so developers can not focus on critical business logic. To
solve this problem, Aergo supports SQL. This section details the types and usage of SQL APIs available in smart
contracts

Note: The db package is currently only available on private networks and publicly on SQL TestNet.

exec(sql)

This function performs DDL or DML statements

query(sql)

This function performs SELECT statements and returns a result set object

prepare(sql)

This function creates a prepared statement and returns a statement object

-- create customer table
function createTable()
db.exec([[create table if not exists customer(

id text,
passwd text,
name text,
birth text,
mobile text

)]])
end

function insert(id, passwd, name, birth, mobile)
db.exec("insert into customer values (?, ?, ?, ?, ?)",

id, passwd, name, birth, mobile)
end

Functions of result set object

Object functions must be called with the : operator

6.1. Lua 59

https://sqltestnet.aergoscan.io/

aergo-guide Documentation

next

This function prepares the next result row. Returns true if there is a row, otherwise false

get

This function returns a result row

function query(id)
local rt = {}
local rs = db.query("select * from customer where id like '%' || ? || '%'", id)
while rs:next() do
local col1, col2, col3, col4, col5 = rs:get()
local item = {

id = col1,
passwd = col2,
name = col3,
birth = col4,
mobile = col5

}
table.insert(rt, item)

end
return rt

end

Functions of prepared statement object

You can use the parameters in the SELECT or DML statement to view, add, modify, or delete information.

query(bind1, bind2,)

This function executes a SELECT statement using the specified argument values corresponding to bind parameters
and returns a result set object

exec(bind1, bind2,)

This function executes a DML statement using the specified argument values corresponding to bind parameters

SQL Restrictions

Smart Contract’s SQL processing engine is built on SQLite. Therefore, detailed SQL usage grammar can be found at
https://sqlite.org/lang.html and https://sqlite.org/lang_corefunc.html. However, because of the stability and security of
the Aergo, not all SQL is allowed.

types

Allow only SQL datatypes corresponding to Lua strings and numbers (int, float).

• text

60 Chapter 6. Smart Contracts

https://sqlite.org/lang.html
https://sqlite.org/lang_corefunc.html

aergo-guide Documentation

• integer

• real

• null

• date, datetime

SQL statement

The allowed SQL statements are listed below. However, DDL and DML are only allowed in smart contract transac-
tions.

• DDL

– TABLE: ALTER, CREATE, DROP

– VIEW: CREATE, DROP

– INDEX: CREATE, DROP

• DML

– INSERT, UPDATE, DELETE, REPLACE

• Query

– SELECT

Function

The following is an unavailable list

• Data and time related functions can be used except ‘now’ timestring and ‘localtime’ modifier

• load_XXX function

• random function

• sqlite_XXX function

For a list of other functions and descriptions, please refer to the links below.

• Core: https://www.sqlite.org/lang_corefunc.html

• Date and time: https://www.sqlite.org/lang_datefunc.html

• Aggregation: https://www.sqlite.org/lang_aggfunc.html

Constraint

The following constraints can be used.

• NOT NULL

• DEFAULT

• UNIQUE

• PRIMARY KEY(FOREIGN KEY)

• CHECK

6.1. Lua 61

https://www.sqlite.org/lang_corefunc.html
https://www.sqlite.org/lang_datefunc.html
https://www.sqlite.org/lang_aggfunc.html

aergo-guide Documentation

function init_database()
db.exec("drop table if exists customer")
db.exec("create table customer (cid integer PRIMARY KEY ASC AUTOINCREMENT ,

→˓passwd text , cname text, birthdate date, rgdate date)")
db.exec("insert into customer (cid, passwd, cname, birthdate, rgdate) values (100

→˓,'passwd1','', date('1988-01-03'),date('2018-05-30'))")
db.exec("insert into customer (passwd, cname, birthdate, rgdate) values ('passwd2

→˓','', date('1978-11-03'),date('2018-05-30'))")
db.exec("insert into customer (passwd, cname, birthdate, rgdate) values ('passwd3

→˓','', date('1938-04-23'),date('2018-05-30'))")

db.exec("drop table if exists product")
db.exec("create table product (pid integer PRIMARY KEY ASC AUTOINCREMENT, pname

→˓text, price real, rgdate date)")
db.exec("insert into product (pid, pname, price, rgdate) values (1000 ,'',1000,

→˓date('2018-05-30'))")
db.exec("insert into product (pname, price, rgdate) values ('',10000, date('2018-

→˓05-30'))")
db.exec("insert into product (pname, price, rgdate) values ('',3500, date('2018-

→˓05-30'))")

db.exec("drop table if exists order_hist")
db.exec("create table order_hist (oid integer PRIMARY KEY ASC AUTOINCREMENT, cid

→˓integer, pid integer, p_cnt integer, total_price real, rgtime datetime, FOREIGN
→˓KEY(cid) REFERENCES customer(cid), FOREIGN KEY(pid) REFERENCES product(pid))")

db.exec("insert into order_hist(oid, cid, pid, p_cnt, total_price,rgtime)
→˓values(10000,100,1000,3,3000, datetime('2018-05-30 16:00:00'))")

db.exec("insert into order_hist(cid, pid, p_cnt, total_price, rgtime) values(100,
→˓1000,3,3000, datetime('2018-05-30 17:00:00'))")

db.exec("insert into order_hist(cid, pid, p_cnt, total_price, rgtime) values(100,
→˓1000,3,3000, datetime('2018-05-30 18:00:00'))")
end

json package

Json package is provided for user convenience in input and output. This package allows automatic conversion between
JSON format strings and Lua Table structures.

encode(arg)

This function returns a JSON-formatted string with the given lua value.

decode(string)

This function converts a string in JSON format to the corresponding Lua structure and returns it

crypto package

sha256(arg)

This function computes the SHA-256 hash of the argument.

62 Chapter 6. Smart Contracts

aergo-guide Documentation

ecverify(message, signature, address)

This function verifies the address associated with the public key from elliptic curve signature.

function validate_sig(data, signature, address)
msg = crypto.sha256(data)
return crypto.ecverify(msg, signature, address)

end

bignum package

Since the lua number type has a limit on the range that can be represented by an integer (less than 2 ^ 53), the bignum
module is used to provide an exact operation for larger numbers.

• Notice

– == Operations on bignum and other types always return false.

– Bignum does not allow a decimal point.

– Bignum value range : -(2^256 - 1) ~ (2^256 -1)

number(x)

This function make bignum object with argument x(string or number)

isneg(x)

Check bignum x if negative than return true else false

iszero(x)

Check bignum x if zero than return true else false

tonumber(x)

Convert bignum x to lua number

tostring(x) (bignum.tostring(x) same as tostring(x))

Convert bignum x to lua string

neg(x) (same as -x)

Negate bignum x and return as bignum

6.1. Lua 63

aergo-guide Documentation

sqrt(x)

Returns the square root of a positive number as bignum. not permitted negative value to x

compare(x, y)

Compare two big numbers. Return value is 0 if equal, -1 if x is less than y and +1 if x is greater than y.

add(x, y) (same as x + y)

Add two big numbers and return bignum

sub(x, y) (same as x - y)

Subtract two big numbers and return bignum

mul(x, y) (same as x * y)

Multiply two big numbers and return bignum

mod(x, y) (same as x % y)

Returns the bignum remainder after bignum x is divided by bignum y

div(x, y) (same as x / y)

Divide two big numbers and return bignum

pow(x, y) (same as x ^ y)

Power of two big numbers and return bignum. not permitted negative value to y

divmod(x, y)

Returns a pair of big numbers consisting of their quotient and remainder

powmod(x, y, m)

Return the bignum remainder after pow(bignum x,bignum y) is divided by bignum m. not permitted negative value to
y

isbignum(x)

Return true if x is bignum else false

64 Chapter 6. Smart Contracts

aergo-guide Documentation

tobyte(x)

Return byte string of bignum x. not permitted negative value to x

frombyte(x)

Return bignum from byte string x

function factorial(n,f)
for i=2,n do f=f*i end
return f

end
for i=1,30 do
local b=factorial(i,bignum.number(1))
return bignum.mod(b, 10)

end

6.1.4 Examples

Reusable code

https://github.com/aergoio/athena-370

Using libraries

https://github.com/aergoio/athena-371

Aergo Contract Example

https://github.com/aergoio/aergo-contract-ex

6.1.5 Fee delegation

Generally the user who sends a transaction needs to pay the transaction execution fee. The fee delegation is a feature
that allows the contract to pay the execution, so the user does not need to pay for it.

In order to use this feature, the contract needs to support fee delegation and the transaction must use the FeeDelegation
type. The contract also needs to have sufficient balance to pay the execution.

Registering the functions

The functions to be executed using fee delegation must be specified with abi.fee_delegation()

Example:

abi.fee_delegation(function1, function2)

6.1. Lua 65

https://github.com/aergoio/athena-370
https://github.com/aergoio/athena-371
https://github.com/aergoio/aergo-contract-ex

aergo-guide Documentation

check_delegation function

The check_delegation is a special function used to check whether the transaction can be processed using fee
delegation. In another words: if the contract will pay for this specific transaction execution or not.

It is called by the engine when a transaction with fee delegation type arrives (a transaction asking to be paid by the
contract). The arguments to this function are:

• the name of the function that the transaction wants to call/execute

• the arguments to that function

You can use any logic to determine if the transaction will be paid by the contract. It is common to check who is sending
the transaction with system.getOrigin() or system.getSender().

This function should return a boolean (true=accept or false=reject) and it is read-only (it should not write to the
state).

Differing from normal calls

Notice that the function marked to be called using fee delegation can also be called with transactions that pay them-
selves for the execution.

You can check whether the transaction is using fee delegation with the system.isFeeDelegation() function.

Transfering coins to the smart contract

Currently the existing method is by using a transaction with type CALL and setting the desired amount.

The smart contract must have a function registered with abi.payable(), generally the default function. In
this case no payload is required, otherwise the transaction must specify the name of the function that will receive the
transfer.

Contract example

Here is a very basic example of a contract that implements fee delegation:

state.var{
whitelist = state.map(),
item = state.value()

}

function reg(user)
if (k == nil) then

whitelist[system.getSender()] = true
else

whitelist[user] = true
end

end

function work(arg0)
if (system.isFeeDelegation() == true) then

whitelist[system.getSender()] = false
end
item:set(arg0)

end
(continues on next page)

66 Chapter 6. Smart Contracts

aergo-guide Documentation

(continued from previous page)

function check_delegation(fname, arg0)
if (fname == "work") then

return whitelist[system.getSender()]
end
return false

end

function default()
end

abi.register(reg, work)
abi.payable(default)
abi.fee_delegation(work)

aergocli example

aergocli contract call --delegation
→˓AmPbWrQbtQrCaJqLWdMtfk2KiN83m2HFpBbQQSTxqqchVv58o82i
→˓Amh6aHxfoMrCmXd2GrV3Yem1zmcqgAiPaJAhsux3wedpEVUCGowx work
1 : HtyNZdJzJNYkeCQCrz8xozPvGLn1xhde9ExNEEiEKPy4 TX_OK

Receipt

aergocli receipt get HtyNZdJzJNYkeCQCrz8xozPvGLn1xhde9ExNEEiEKPy4
{
"BlokNo": 9673,
"BlockHash": "Az8pJvDso44nP9Lq5Wj7QoU6n9yZcFkCcmJaiRKyq9Qz",
"contractAddress": "Amh6aHxfoMrCmXd2GrV3Yem1zmcqgAiPaJAhsux3wedpEVUCGowx",
"status": "SUCCESS",
"ret": "",
"txHash": "HtyNZdJzJNYkeCQCrz8xozPvGLn1xhde9ExNEEiEKPy4",
"txIndex": 0,
"from": "AmPbWrQbtQrCaJqLWdMtfk2KiN83m2HFpBbQQSTxqqchVv58o82i",
"to": "Amh6aHxfoMrCmXd2GrV3Yem1zmcqgAiPaJAhsux3wedpEVUCGowx",
"usedFee": 2000000000000000,
"feeDelegation": true,
"events": []

}

6.2 Aergo SCL

Note: This article describes a feature currently under development.

Aergo Smart Contract Language (Aergo SCL, we pronounce it “askel”) is a language dedicated to smart contact for
Aergo, designed to make it easier for developers to develop smart contracts. Although the specification is less than
traditional languages, it aims to be faster and more powerful. Aergo SCL has the following characteristics.

• Strongly typed language

6.2. Aergo SCL 67

aergo-guide Documentation

• Object-oriented language (except for inheritance and abstraction)

• Support SQL extension for database access

• Support extension for blockchain access

• Compiled with WebAssembly

Aergo SCL is currently not supported on the testnet but under active development.

6.3 Java Database Connectivity (JDBC)

The Aergo smart contract engine has rich SQL support and is compatible with JDBC adapters. With this you can
connect to a smart contract just like any other traditional SQL database.

The JDBC adapter removes the need for creating and sending blockchain transactions manually. Instead, you can run
SQL queries directly.

6.3.1 How to

1. Download the required JDBC adapter and Lua smart contract from github.com/aergoio/aergojdbc

2. Compile and deploy the smart contract on a Aergo network that supports SQL operations (private networks or
the public Alpha network at alpha-api.aergo.io). The deployed smart contract acts as your database instance on
the blockchain.

3. Use a JDBC compatible software, such as the database connection in Eclipse or SQuirrelSQL, and connect using
the provided adapter, an encrypted private key, and password.

6.3.2 Connection

• Driver: aergo-jdbc-version.jar, org.aergojdbc.JDBC

• URL: jdbc:aergo:<aergo node ip>:<port>@<jdbc contract address>

• User: encrypted private key

• Password: passphrase used to encrypt private key

• changed at jdbc v1.1.0 support aergo keystore with keystore property and when using keystore, use address
for user property

6.3.3 Limitations

• Maximum response size: 4mb. If the resulting amount of data exceeds this size, adjust the fetch size using
Statement.setFetchSize (default: 10 rows).

• Sqlite: Since the SQL engine in Aergo is Sqlite, only operations supported by Sqlite are possible.

• Unsupported features:

– Transaction commit, rollback: transactions always auto commit

– Scrollable cursor

– CallableStatement

68 Chapter 6. Smart Contracts

https://github.com/aergoio/aergojdbc
../lua/hello-world.html#compile-contract
https://alpha.aergoscan.io/

CHAPTER 7

Technical Specifications

These articles describe technical specifications in detail.

7.1 Addresses

7.1.1 Client-side

Account and contract addresses are Base58-check encoded strings that look like this:

AmQA7dHJFiA4mXXxTV5sAniLpxMrankdW4Cow3ykj1UM5G14QKL5

• Technical explanation of Base58-check encoding

The prefix used for encoding Aergo addresses in base58-check is 0x42.

7.1.2 Internal

Internally (in the server and over the wire, i.e. in GRPC requests) addresses are byte arrays with a length of 33. They
represent the compressed public key of an account.

• Technical explanation of public keys

In the case of smart contracts, the address is generated from a hash of the creator’s account and the creating transac-
tion’s nonce, prefixed with the byte 0x0C to arrive at a compatible length of 33 bytes. As a developer, you don’t have
to worry about this: smart contract addresses can be used just the same as account addresses.

7.2 Token Units

1 aergo = 1 * 10^18 aer = 1 * 10^9 gaer

69

https://en.bitcoin.it/wiki/Base58Check_encoding
http://learnmeabitcoin.com/glossary/public-key

aergo-guide Documentation

The Aergo CLI and client libraries have support for these units, i.e. you can specify transaction amounts as 1 aergo
instead of 1000000000000000000.

Note that amounts in the base unit aer exceed the range of 64-bit integers. You need some implemention of Big Integer
to deal with these numbers. Aergo SDKs come bundled with a recommended way to do that. In most cases, you can
just use strings instead of numbers. For example, when creating a JSON transaction, set

{
"amount": "1000000000000000000"

}

7.3 Name System

Aergo contains a name service to translate addresses into easy to remember short names.

One name maps to exactly one address. Names are currently fixed to a length of 12 characters.

Names include an owner and a destination. The owner is used to determine who can change the name, the
destination is the actual adress the name should resolve to. In case of normal accounts, these two values will be
identical, but they differ in case of smart contracts.

7.3.1 Creating and updating names

The easiest way to create and update names is the aergocli.

Registering and updating names requires spending a cetrain amount of aergo determined by the DAO vote “nameprice”.

To register a new name:

aergocli name new --from my_unlocked_account_address --name my12charname

To change the destination of the name:

aergocli name update --from my_unlocked_account_address --to account_address_or_
→˓contract_address --name my12charname

Warning: The update command affects both the destination and the owner of a name. If the new destination is
a regular account, both owner and destination are set to that address. If the new destination is a smart contract
address, the owner is set to the address of that contract’s creator.

7.3.2 Lookups

To retrieve the owner and destination of a registered name:

aergocli name owner --name my12charname

The destination field contains the resolved address.

This method is also available over RPC and in the various SDKs.

70 Chapter 7. Technical Specifications

../tools/aergocli.html
../api/index.html
../sdks/index.html

aergo-guide Documentation

7.3.3 Reverse lookups

Aergo server currently supports no way to do reverse lookups, i.e. finding all names associated with an address. On
public networks, you can use block explorers like Aergoscan to find that information.

7.3.4 Technical details

Names are stored in the state of the special account aergo.name. They are created and updated using special gover-
nance transactions. Refer to transaction types for the technical specification of these actions. Governance transactions
don’t require any fee, but the name system requires an amount of aergo to be included in the transaction. This amount
is determined by the DAO vote “nameprice”. You can check the current name price in the ChainInfo.

Transactions that create or update names are effective after they are included in a block. That means that you can only
refer to new or updated names in the following block.

7.4 Consensus Algorithm

The objective of all blockchain protocols is to replicate a blockchain and its associated state across participating nodes.
To achieve such an agreement, each blockchain protocol deploys a consensus algorithm.

The public Aergo network uses Delegated Proof of Stake (DPoS) for blockchain consensus.

BP Election In DPoS, blocks are generated only by a limited number of nodes called Block Producers (BPs). BPs
are elected via voting, where the voting power is weighted by staked tokens.

BPs are re-elected round by round (blocks per round = 100). In each round, time is split into slots and each slot
is assigned to one of the elected BPs. Only the permitted BP can produce a block in a time slot.

Staking & Voting Staking means locking up one’s tokens for a minimum period of time. Any user wanting to vote
must stake their tokens since the voting power is weighted by the number of staked tokens, as remarked above.

All of these requests are performed via a transaction. Therefore, all proccesses are transparently recorded in the
blockchain and can be verified by anyone.

After the voting transaction is included in the block, the results are caculated immediately. But there is a slight
delay until it is applied. The current BPs are elected based on the voting result gathered at the block number:
(<current block number> / 100 - 1) * <the total number of BPs>.

In other words, the voting results gathered in the past (approximately 1 round before) are used for stability
(recent blocks may be roll-backed via a reorganization).

Votes are locked for a certain period of time to prevent users from spamming votes. On the public Aergo
network, this is currently approx. 1 day (after 60 * 60 * 24 block number). That means, after casting a vote, a
user can only change their vote after 1 day has passed.

Last Irreversible Block (LIB) In some blockchain protocols, a blockchain may branch into two or more, which is
called a fork. Later, only one of them is chosen as the main branch via a set of rules defined by the protocol.
Such reorganizations limit each block’s finality and, in turn, transaction’s finality. For example, a transaction,
included in a block at one time, might be rejected later.

DPoS also allows blockchain forks. However, a block becomes a last irreversible block (LIB) when it is (double
time) confirmed by a majority (2/3+) of BPs. Once a block is determined as a LIB, it cannot be rolled back, i.e.
it achieves finality.

7.4. Consensus Algorithm 71

transaction-types.html
./transactions.html#governance-type

aergo-guide Documentation

7.5 Transactions

7.5.1 Tx

Field Type Description
Hash bytes Hash of body
Body Nonce uint64 Increasing number used only once per sender account

Account bytes Decoded sender account address
Recipient bytes Decoded receiver account address
Amount bytes Amount of transfer
Payload bytes Smart contract data
Limit uint64 Maximum limit of gas to be used (0 = no limit)
Price bytes Reserved
Type int See below
ChainIDHash bytes Hash of chain ID
Sign bytes ECDSA signature with secp256k1

7.5.2 Payload

A payload can be any kind of binary data, but is most often used with JSON strings for smart contract calls.

7.5.3 Transaction types

There are several kinds of transactions.

Normal type (0)

Normal transactions are used to transfer tokens and calling smart contracts. Since version 2.0, there are more precise
transaction types that should be used instead.

Governance type (1)

Governance transactions are used for calling system contracts, such as staking and voting. Transactions of this type
have a special payload format and recipient. See below for details.

Transfer type (4)

Transactions that only transfer value. For backwards compatability, the Normal type can also be used.

Call type (5)

Smart contract calls should be denoted using the Call transaction type. For backwards compatability, the Normal type
can also be used.

72 Chapter 7. Technical Specifications

contracts.html

aergo-guide Documentation

FeeDelegation type (3)

FeeDelegation transactions are used for calling smart contract while charging fees to the contract. This only works if
the contract supports the fee delegation interface.

Deploy type (6)

Used to deploy contracts. For backwards compatability, the Normal type can also be used.

Redeploy type (2)

Used to re-deploy a contract.

7.5.4 Governance transaction details

The following table shows the specification for each field of the transaction body of a governance transaction.

Action Recipient Amount Payload
staking aergo.

system
amount
to stake

{"Name":"v1stake"}

unstak-
ing

aergo.
system

amount
to
unstake

{"Name":"v1unstake"}

voting aergo.
system

0 {"Name":"v1voteBP","Args":[<peer IDs>]}

voting
DAO

aergo.
system

0 {"Name":"v1voteDAO","Args":[<DAO ID>,<candidate>]}

create
name

aergo.
name

20
aergo *

{"Name":"v1createName","Args":[<a name string>]}

update
name

aergo.
name

20
aergo *

{"Name":"v1updateName","Args":[<a name string>, <new
owner address>]}

add ad-
min

aergo.
enterprise

0 aergo {"Name":"appendAdmin","Args":[<new admin address>]}

remove
admin

aergo.
enterprise

0 aergo {"Name":"removeAdmin","Args":[<admin address>]}

change
raft
cluster

aergo.
enterprise

0 aergo {"Name":"changeCluster","Args":[{"command":"add",
"name":"[node name]","address":"[peer address]",
"peerid":"[peer id]"}]}

add
config

aergo.
enterprise

0 aergo {"Name":"appendConf","Args":[<config key>,<config
value>]}

enable
config

aergo.
enterprise

0 aergo {"Name":"enableConf","Args":[<config key>,
<true|false>]}

remove
config

aergo.
enterprise

0 aergo {"Name":"removeConf","Args":[<config key>,<config
value>]}

* The amount needed for name transactions is determiend by the NAMEPRICE vote. It is currently 20 aergo on
Mainnet. You can retrieve this information by accessing the network’s ChainInfo.

The aergo.system transactions, including staking, unstaking and voting, can be sent once per 24 hours per account.
The only exception is when you first vote. For staking and unstaking, there is a limit to the amount of requests. It must

7.5. Transactions 73

../smart-contracts/lua/using-fee-delegation.html

aergo-guide Documentation

be over 10000 aergo based on the amount of staked. Therefore, the first staking request should exceed 10000 aergo,
and in the case of the unstaking request, more than 10000 must be left or withdrawn altogether.

When voting for DAO, there are IDs by paramter. It will be changed to the new value when the first place gets 2/3 of
the staking total.

DAO ID Value Description
BPCOUNT 1 to 100 The number of block producer
STAKINGMIN 1 to 500000000000000000000000000 The amount of staking minimum
GASPRICE 1 to 500000000000000000000000000 The price of gas
NAMEPRICE 1 to 500000000000000000000000000 The price of name transactions

The aergo.enterprise transactions are only for the private blockchain network. if you want to enable aergo.enterprise,
you should make the genesis block with "public":"false"

7.5.5 Transaction receipts

See also:

See API → Receipt for a detailed explanation of all the receipt data.

Every transaction generates a receipt upon succesful execution which contains the result and metadata such as fee and
gas used. The status can be one of three values:

SUCCESS Simple value transfer transactions and succesful contract executions. For contract calls, the result is
available in ret.

ERROR Failed contract execution. The error message can be found in ret.

CREATED Succesful contract deployment transaction. The created address can be found in contractAddress.

7.6 Smart Contracts

Contracts are special kinds of accounts that have code, an ABI, and state.

This is a technical description of the protocol and execution. It is recommended to interact with contracts using higher
level API supported by aergocli and the various SDKs.

7.6.1 Deployment

Contracts are deployed by sending a transaction with the contract code as payload to the null receiver (empty receiver
address). Upon execution, the contract state is created at an address calculated from the sender and the nonce of the
deployment transaction. You can find out the created contract address in the transaction receipt.

See here for details about address generation.

7.6.2 Calling Contracts

To call contract methods, send a transaction to the contract’s address specifying the function name and arguments as
JSON payload.

74 Chapter 7. Technical Specifications

../api/rpc-autogenerated.html#receipt
addresses.html

aergo-guide Documentation

7.6.3 Events

Contracts can log events during execution. This is the preferred way to notify the outside world of important state
changes.

Logged events can be found as part of the transaction receipt and also easily searched for using the GetEvents API.

7.7 Transaction Fees

The Aergo protocol includes transaction fees that need to be paid according to the configuration of the network.

Versions prior to 2.0 (see 1.3 docs) included a simplified transaction fee scheme, taking into account payload and state
database usage size.

This is not fair because it does not consider the actual execution time and resource usage of the transaction. In version
2.0, a gas system was introduced to correct this problem.

Gas is a numerical representation of execution and storage costs in the transaction and contract. But gas is not a fee.
To calculate the fee, we need the gas price.

7.7.1 Gas Price

Gas price is the AER value corresponding to 1 gas. All transactions in a block have the same gas price. Gas price is
determined by a DAO vote.

7.7.2 Gas Limit

The gas limit allows the user to specify the maximum amount of gas used for transactions and contracts. For backward
compatibility with previous versions that did not specify a gas limit, a gas limit of 0 automatically calculates the
maximum amount of gas available from an account’s balance.

7.7.3 Gas Table

Transaction

Transactions other than governance transactions consume 100,000 gas by default. If you have a payload, addi-
tional gas will be used depending on the size.

Payload gas: (Bytes of a payload - 200) * 5

Instructions

The table below shows gas usage for Lua bytecode.

7.7. Transaction Fees 75

https://docs.aergo.io/en/1.3/specs/fees.html

aergo-guide Documentation

Name GAS
ISLT, ISGE, ISLE, ISGT, ISEQV, ISNEV, ISEQS,
ISNES, ISEQN, ISNEN, ISEQP, ISNEP

2

ISTC, ISFC, IST, ISF, ISTYPE, ISNUM 1
MOV 2
NOT, UNM 1
LEN 3
ADDVN, SUBVN 2
MULVN, DIVVN, MODVN 3
ADDNV, SUBVN 2
MULNV, DIVNV, MODNV 3
ADDVV, SUBVV 2
MULVV, DIVVV, MODVV 3
POW 3
CAT 3
KSTR, KCDATGA, KSHORT, KNUM, KPRI, KNIL 1
UGET, USETV, USETS, USETN, USETP, UCLO,
FNEW

2

TNEW 2
TDUP 5
GGET, GSET 3
TGETV, TGETS, TGETB, TGETR, TSETV, TSETS,
TSETB, TSETM, TSETR

2

CALLM, CALL, CALLMT, CALLT, ITERC, ITERN 10
VARG 5
ISNEXT 2
RETM 5
RET, RET0, RET1 3
FORI, FORL, ITERL, LOOP, JMP 2

Built-in Functions

Gas usage for built-in functions provided by the Lua VM

Name GAS
assert 3
error 5
getfenv 5
getmetable 3
ipairs 3
next 3
pairs 3
pcall 10
rawequal 5
rawget 3
rawset 5
select 3 (length), 5 (get an element)
setfenv 5
setmetatable 3
tonumber 5

Continued on next page

76 Chapter 7. Technical Specifications

aergo-guide Documentation

Table 1 – continued from previous page
Name GAS
tostring 5
type 2
unpack 5 + (2 * number of arguments)
xpcall 10
string.byte, string.char 3 + (1 * number of string units (arguments))
string.dump 10
string.find, string.gmatch, string.gsub, string.match 3 + (5 * number of matching strings)
string.format 3 + (2 * number of format modifiers)
string.lower 3 + (1 * number of string units (argument))
string.rep 3 + (2 * number of concatenation)
string.reverse 3 + (1 * number of string units (argument))
string.sub 3 + (1 * number of string units (argument))
string.upper 3 + (1 * number of string units (argument))
table.concat 3 + (3 * number of arguments)
table.insert 3 + (3 * number of cells to move)
table.maxn, table.minn 3 + (3 * comparison count)
table.sort 3 + (5 * comparison count)
math.abs, math.ceil, math.floor, math.pow 3
math.max, math.min 3 + (1 * number of arguments)
bit.tobit 3
bit.tohex 5
bit.bnot 2
bit.bor, bit.band, bit.xor 3 + (2 * number of arguments)
bit.lshift, bit.rshift, bit.ashift, bit.rol, bit.ror 3
bit.bswap 2

Aergo-extension Functions

Gas usage for aergo-extension functions

7.7. Transaction Fees 77

aergo-guide Documentation

Name GAS
system.getSender 1000
system.getBlockheight 300
system.getTxhash 500
system.getTimestamp 300
system.getContractID 1000
system.setItem 100 + (5 * bytes of data)
system.getItem 100
system.getAmount 300
system.getCreator 500
system.getOrigin 1000
system.getPrevBlockHash 500
contract.balance, contract.send, contract.pcall 300
contract.event 500
contract.deploy 5000
contract.call 2000
contract.delegatecall 2000
contract.stake, contract.unstack. contract.vote, con-
tract.voteDao

500

json.encode, json.decode 50 + (50 * number of objects)
crypto.sha256 500
crypto.ecverify 5000
bignum.number 50
bignum.isneg, bignum.iszero 10
bignum.tonumber, bignum.tostring 50
bignum.neg 100
bignum.sqrt 300
bignum.compare 50
bignum.add, bignum.sub 100
bignum.mul, bignum.div, bignum.mod 300
bignum.pow, bignum.divmod, bignum.powmd 500

7.7.4 Gas estimation using Brick

Although there is a gas usage tables, it is not easy to calculate the exact gas limit. The simplest way to estimate is to
use the Brick. The Brick allows you to deploy and perform contracts without running an actual blockchain. Using
Brick, you can check contract call results, gas usage, etc. It also has functions for debugging the contract.

78 Chapter 7. Technical Specifications

https://github.com/aergoio/aergo/tree/master/cmd/brick
https://github.com/aergoio/aergo/tree/master/cmd/brick

aergo-guide Documentation

7.8 Blocks

7.8.1 Block header

Field Type Description
ChainID []byte identifier of chain
PrevBlockHash []byte hash of previous block
BlockNo uint64 height of block
Timestamp int64 block timestamp
BlocksRootHash []byte root hash of State SMT(sparse merkle tree)
TxsRootHash []byte Merkle root of transactions
ReceiptsRootHash []byte Merkle root of transaction receipts
Confirms uint64 indicates how many block is confirmed by block in DPOS consensus
PubKey []byte public key of the block producer (BP)
CoinbaseAccount []byte the account address to which block reward is given
Sign []byte BP’s Signature for block header

ChainID

It is used to prevent the wrong block transmission from other chains.

Field Type Description
Version int32 version number of chain
PublicNet bool true if public net
MainNet bool true if main net
CoinbaseFee string Fee consumed per tx. Fixed value
Magic string Magic string, arbitrarily chosen by each blockchain
Consensus string dpos or sbp

Version

Version is used to identify when the block format changes or when the function of the chain changes.

PublicNet

Differentiate between public and private networks.

MainNet

Differentiate between main net and other test net or other use net.

CoinbaseFee

CoinbaseFee is used to set the peak per Tx.

7.8. Blocks 79

aergo-guide Documentation

Magic

Magic can be considered as a name of a blockchain. The two blockchains with different magic strings reject each
other’s blocks (they are seperate, indenpendent blockchains).

Consensus

Specify the concensus method name used in the chain.

7.8.2 Block body

Field Type Description
Txs []Tx Transactions

7.9 P2P

7.9.1 P2P wire protocol

This page describe the p2p wire protocol for protocol version 0.3.3

Note: Some contents are work in progress and will be implemented before the launch of the mainnet.

Messages

Handshake message

A handshake message is used once at starting handshake. The outbound peer sends HSReqHeader and the inbound
peer send HSResp to select perper handshake protocol version. As of Aergo v1.2.0, the protocol version is 0.3.2 and
can accept 0.3.1 and 0.3.0

HSReq is variable length byte stream which contains accepted protocol versions

• 4 : Magic

• 4 : count of accepted protocol versions

• 4*n : list of accepted versions. The former is perfered version (actually the newest version is the first)

HSResp is 8 bytes length byte stream

• 4 : The same Magic as HSReq request or zero if handshaking is not possible

• 4 : The selected protocol version or error code if first 4 byte value is zero

Handshake response error codes

Name Code Remark
HSCodeWrongHSReq 0001 Request header is wrong
HSCodeNoMatchedVersion 0002 The inbound server have no prefer protocol version
HSCodeAuthFail 0003 Wrong peer identiry

80 Chapter 7. Technical Specifications

aergo-guide Documentation

P2P version notation

• 2 : Major verion

• 1 : Minor version

• 1 : Patch version

Normal message

Header (48bytes) + Payload (variable size)

Message header

• 4 : code number of subprotocol . Big endian number

• 4 : payload size. Big endian number.

• 8 : creation time of this message. unix timestamp with precision of nanosecond . Big endian number

• 16 : message id. binary form of uuid.

• 16 : original request id. only meaningful if message is response message. binary form of uuid.

Message payload

Payload is serialized form of protobuf struct. The size and struct type is differ by subprotocol.

List of Subprotocols

Code is hexadecimal number. Refer to Subprotocols for detailed information of each subprotocol.

7.9. P2P 81

subprotocols.html

aergo-guide Documentation

Name Code Summary
StatusRequest 0001 Used in handshake
PingRequest 0002 Ping including last block hash and number
PingResponse 0003 Response ping
GoAway 0004 Disconnect notice with reason
AddressesRequest 0005 Query request to get list of connected peers
AddressesResponse 0006 Response for AddressesRequest.
GetBlocksRequest 0010 request for getting datas of blocks
GetBlocksResponse 0011 response of GetBlocksRequest. Multiple responses for a single request if size of

blocks is too big
GetBlockHeadersRe-
quest

0012 request list of headers of consecutive blocks.

GetBlockHeadersRe-
sponse

0013 response of GetBlockHeadersRequest

NewBlockNotice 0016 notice of block which the sender was not produced; i.e. it is relay of block notice.
GetAncestorRequest 0017 request for finding common ancestor. used for peer sync
GetAncestorResponse 0018 response of GetAncestorRequest
GetHashesRequest 0019 request for get hashes of consecutive blocks.
GetHashesResponse 001A response of GetHashesRequest
GetHashByNoRe-
quest

001B request for get hash of single block by number

GetHashByNoRe-
sponse

001C response of GetHashByNoRequest

GetTXsRequest 0020 request for getting datas of txs
GetTxsResponse 0021 response of GetTXsRequest. Multiple responses for a single request if size of

blocks is too big
NewTxNotice 0022 notice of valid tx
BlockProducedNotice 0030 block notice from block producer
BlockProducedNotice 0030 A block is produced. This notice is created only in BP and sent to other trusted

BP or FULL nodes.

List of Response Status

Some subprotocols for responsing other message have ResultStatus property.

82 Chapter 7. Technical Specifications

aergo-guide Documentation

Name Code Remark
OK 0 OK is returned on success.
CANCELED 1 when operation was canceled
UNKNOWN 2
INVALID_ARGUMENT 3 INVALID_ARGUMENT is missing or wrong value of argument
DEAD-
LINE_EXCEEDED

4 timeout

NOT_FOUND 5 Resource is not found
ALREADY_EXISTS 6
PERMISSION_DENIED 7
RE-
SOURCE_EXHAUSTED

8

FAILED_PRECONDITION 9
ABORTED 10
OUT_OF_RANGE 11
UNIMPLEMENTED 12 indicates operation is not implemented or not supported/enabled in this ser-

vice.
INTERNAL 13
UNAVAILABLE 14 Unavailable indicates the service is currently unavailable.
DATA_LOSS 15
UNAUTHENTICATED 16 indicates the request does not have valid authentication credentials for the

operation.

Payload of Subprotocols

StatusRequest

• sender: information of sender (address, port, peerID or etc)

• bestBlockHash: current best block of sender

• bestHeight: current best block height of sender

• chainID: ChainID which sender is storing

• genesis: hash of genesis block, added since protocol version v0.3.2

PingRequest

• bestBlockHash: current best block of sender

• bestHeight: current best block height of sender

GoAway

• reason: description text

AddressesRequest

• sender: address information of requester

7.9. P2P 83

aergo-guide Documentation

• maxSize: limit of response size

AddressesResponse

• status: response status code

• peers: list of peers

GetBlocksRequest

• hashes: array of block hashes

GetBlocksResponse

• status: response status code

• blocks: list of block data

• hasNext: boolean flag indicating there are more response(s) for the request

GetBlockHeadersRequest

• hash: starting hash to get.

• height: starting height to get. height is ignored if hash is not empty.

• size: maximum header count to get.

GetBlockHeadersResponse

• status: response status code

• hashes: array of block hashes which the response contains.

• headers: list of block headers. the order of hashes and headers is matching

• hasNext: boolean flag indicating there are more response(s) for the request

NewBlockNotice

• blockHash: hash of new block

• blockNo: block number

GetAncestorRequest

• hashes: list of block hashes

84 Chapter 7. Technical Specifications

aergo-guide Documentation

GetAncestorResponse

• status: response status code

• ancestorHash: block hash of common ancestor

• ancestorNo: block number of common ancestor

GetHashesRequest

• prevHash: block hash of starting point. the hash and number must match to actual block

• prevNumber: block number of starting point

• size: maximum hash count to get.

GetHashesResponse

• status: response status code

• hashes: array of block hashes which the response contains.

GetHashByNoRequest

• blockNo: block number

GetHashByNoResponse

• status: response status code

• blockHash: hash of requested block

GetTXsRequest

• hashes: array of tx hashes

GetTXsResponse

• status: response status code

• hashes: array of tx hashes which the response contains.

• txs: list of tx data. the order of hashes and txs is matching

• hasNext: boolean flag indicating there are more response(s) for the request

7.9. P2P 85

aergo-guide Documentation

7.9.2 Legacy version infomation

v0.3.0

Handshake message

-A handshake message is used once at starting handshake. It contains two 4-byte number. Both outbound peer send
HSReq

+HSReq is 8 byte stream which p2p protocol version

+4 : Magic +4 : p2p protocol version of outbound peer. The inbound peer accept handshake if version is matching or
close connection if not.

7.9.3 Peer Connect

NOTE: Some document is not translated yet.

Node Discovery

When the Aergo server starts running, you need a way to connect to the network. To do this, you need to know and
connect to other Aergo server nodes already connected to the chain. Aergo does this using several methods.

Query polaris

Polaris keep list of aergo server nodes, such like DNS. Aergo server connect and query to official Aergo Polaris
automitically, if the chain is Official AergoMainNet or AergoTestNet.

You can build and run custom Polaris for your private chain or custom public chain. You should configure to use
custom Polaris by modifying config file.

Designate Peer

You can add a list of designated known peers to connect to at boot time in configuration file using the option ‘npad-
dpeers’.

Dynamic peer discovery

Aergo server requests peer list from other connected peers as well as Polaris if it cannot find enough peers.

Choosing remote peers

(This feature is currently work in progress)

The list of peers to connect to is managed in Kademlia-like manner. The number of peers that are closer to the peer is
larger and the number of peers that are connected to the peer is smaller. The peer’s distance is based on the difference
based on the hash value, not the physical distance.

86 Chapter 7. Technical Specifications

aergo-guide Documentation

Peer connect process

The network communication of Aergo server operates on libp2p basis, and libp2p is responsible for encryption and
node distinction at transmission level. After a tcp session is created, both peers start the handshake operation.

Peer Handshake

In the Handshake phase, peers exchanges each other’s version, chain ID and state to determine whether to connect. If
the other node version is not supported by the current server or the operating chain ID is different, the connection is
stopped. Once the handshake is successful, the difference in block height is compared and synchronization started.

Keep Alive

Aergo server maintains a connection-based communication. Both peers disconnect when the internally defined reten-
tion score increases beyond a certain level. This score decreases to a low level when a query is requested, and increases
when a bad block or TX notification is sent.

Peer blacklist

(This feature is currently work in progress)

When an internally defined ban score exceeds a certain level, the Aergo server blocks the peer’s connection. This score
increases due to the connection being disconnected due to exceeding the connection maintenance score, etc., and the
blocking period is also changed by calculating the score or the number of blocking times. You can also permanently
block by specifying a block address in the configuration file.

7.10 Keystore

Note: If you or your users are storing significant amounts of values in an Aergo account, be advised that the only
really secure way of storing private keys is using dedicated, offline hardware like a hardware wallet. This article is not
a operations security guide. Please do your own research about private key security.

Securing private keys is the responsibility of client software, but Aergo has a recommended storage format for in-
creased portability. This storage format is also used internally when storing accounts in aergocli or aergosvr.

This so-called Keystore format defines a file format (json) and encryption scheme.

7.10.1 File format

Filename: {address}__keystore.txt

{
"aergo_address": "Amdxxxx",
"ks_version": "1",
"kdf": {
"algorithm": "algorithm_name",
"params": {

"some_param": "some_value"

(continues on next page)

7.10. Keystore 87

aergo-guide Documentation

(continued from previous page)

},
"mac": "mesasge_authentication_code"

},
"cipher": {
"algorithm": "algorithm_name",
"params": {

"some_param": "some_value"
},
"ciphertext": "dxxxx",

}
}

Rules

• Version field is for choosing cipher algorithm. If version updates, cipher algorithm would be updated (also
format can change).

• Every file has its own algorithm and parameters per version. If any of the parameters break, an error should be
thrown.

• File name is ‘{address}__keystore.txt’ or ‘{alias}__keystore.txt’

• File name is used to identify keystore file. Duplicates are not allowed.

• For the alias file, you can have same keystore file representing same account using different alias. That’s fine.

• Address must be a valid base58-check encoded address. Alias must be form of [a-zA-Z0-9]+

7.10.2 Version 1 encryption scheme

Example implementations: Javascript

Encrypt

encryptionKey = Scrypt(rawPassword, scryptParams)
cipherText = AES_CTR.encrypt(rawPrivateKey, encryptionKey[0:16], nonce)
mac = Sha256(encryptionKey[16:32] + cipherText)
keystore = {

"aergo_address": "Amdxxxx",
"ks_version": "1",
"kdf": {
"algorithm": "scrypt",
"params": scryptParams,
"mac": mac

},
"cipher": {
"algorithm": "aes-128-ctr",
"params": {

"iv": nonce
},
"ciphertext": cipherText

}
}

Decrypt

88 Chapter 7. Technical Specifications

https://github.com/aergoio/herajs/blob/385b93d186569456280e235e3bd3a4f595057c50/packages/crypto/src/keystore.ts

aergo-guide Documentation

encryptionKey = Scrypt(rawPassword, keystore.kdf.params)
mac = Sha256(encryptionKey[16:32] + json.cipher.ciphertext)
if keystore.kdf.mac != mac {

throw "invalid mac"
}
rawPrivateKey = AES_CTR.decrypt(json.cipher.ciphertext, encryptionKey[0:16], json.
→˓cipher.params.iv)

Recommended parameters

{
kdfAlgorithm: 'scrypt',
cipherAlgorithm: 'aes-128-ctr',
kdfParams: {

dklen: 32,
n: 1 << 18,
p: 1,
r: 8,

},
}

7.11 Block Management

This article describes implementation details of management of blocks in the Aergo server. It is aimed at blockchain
server developers.

7.11.1 Block generation

The block factory is responsible for generating blocks and part of the consensus engine.

The consensus engine manages when blocks are created on which nodes. AERGO uses DPoS by default. A new block
producer is selected every second.

The process for creating blocks in the block factory is as follows.

1. Select transactions from from mempool

2. Perform a transaction one by one. If the execution is successful, the transaction is included in the block.

3. If the block size and time limit are exceeded, the transaction is no longer included.

4. Create blocks that contain executed transactions and add signatures to blocks.

The block factory sends the generated blocks to the chain service for propagation and storage.

7.11.2 Notify block

Blocks passed to the chain service are propagated to the connected peer nodes and stored in the database.

The chain service of a node that received the block verifies the block, executes the transactions, and adds the block to
its own database.

7.11. Block Management 89

aergo-guide Documentation

7.11.3 Save block

The chain service stores the generated blocks in the DB for permanent storage. It also stores additional meta informa-
tion to store connection information about the chain.

AERGO uses the Badger database as its permanent storage. Badger stores data in key/value form and supports the
concept of transactions similar to a typical database.

Information stored in the DB is as follows.

The DB is managed in two separate categories, ChainDB and StateDB. This article describes the ChainDB used to
store chain information.

Block info

This information is used to search for blocks in a chain using a hash. Typically, when a block is requested as a hash
from another node, the Hash is searched for and responded to the block with a key.

Key Value
Hash of Block serialized data of Block

Chain info

Chain info is the information that indicates when a block is connected to the main branch.

If the main branch is not connected, that is, only block info is saved and the chain info is not stored.

You can search the blocks of every height of the main branch using the chain info. You can know the height of the top
block of the chain.

Chain info is also used to determine whether the block belongs to the main branch or the sub branch.

Key Value
Number of Block block hash
Latest block Key latest block number of main branch

Transaction Info

tx info is meta information of the transaction that was performed in the main branch. If you search the DB with
transaction hash, you can see which block the transaction is stored in and where the transaction is stored in the block.

The contents of the transaction are not saved separately. Therefore, in order to know the contents of the actual trans-
action, you must search Block info using Block hash and index found in tx info.

Key Value
Transaction hash (Block Hash, index of transaction in block)

7.12 Chain Management

This article describes implementation details of chain management in the Aergo server. It is aimed at blockchain server
developers.

The chain service is responsible for managing the chain. It performs the following tasks in large part:

90 Chapter 7. Technical Specifications

aergo-guide Documentation

1. Validation

2. Insert block to chain

3. Reorganization

4. Syncronization

7.12.1 Block validation

The blocks received in the network may not be valid, so a number of checks are made.

Pre-execution execution

The validator module ensures that the block was generated from a valid BP and the transaction contained in the block
was not forged.

• Consensus validation

Validate the block generated by the valid BP through block creation time and signature.

• Transaction merkle validation

Validate that the transactions were not forged. The verifier module generates a merkle tree with the transactions
and checks if it is the same as the transaction merkle root stored in the block header.

Post-execution validation

These checks ensure that the results of the transaction contained in the block are the same as the results of the BP node
that generated the block.

• State root validation

Checks if the changed state root node hash is the same as the blocksRootHash stored in the block head.

• Receipt merkle validation

Generates a merkle tree with the receipts generated as a result of the transactions and checks if they are identical
to the receipts stored in the block header.

7.12.2 Insert block into chain

There are two cases in which the chain service adds blocks:

1. Block generated by block factory

When it is a BP node’s turn, it generates new blocks in the block factory.

The block factory performs all transactions and forwards the block to the chain service. The execution
results are included with the block.

The execution results include the results of the transaction, receipt, and state changed entry indicating the
change to the account.

The chain service stores information related to blocks in the ChainDB and information about accounts in
the StateDB.

2. Block received from another peer node

For blocks received from other peer nodes, there are three main cases:

7.12. Chain Management 91

aergo-guide Documentation

• Orphan block

This is the case if the parent block has not yet been stored in the DB. Orphan blocks are stored in
the orphan block cache on memory. Then, when the parent block is received, it is removed from the
organ block cache and reprocessed.

• Side branch block

In case the parent block is stored but is not part of the main branch. In this case, the block is not
performed and only the block info{hash, block} is stored.

• Main branch block

In case the head of the main branch is the next block. In this case, the blocks are stored after
performing the transactions.

The process for storing blocks in the main branch is as follows:

1. Validation before execution

2. Execute transactions

3. Apply changed account entries state merkle tree

4. Validate after execution

5. Save state merkle tree to StateDB

6. Save chain meta data to ChainDB

7.12.3 Reorganization

The chain service selects and maintains the longest chain as the main branch. The side branches are not executed and
only the block info is stored in the DB. If the side branch received from another peer is longer than the main branch
held by the node, the side branch is changed to the main branch. This is called the reorgnize process.

The reorgnization is performed as follows.

1. Find common ancestor

Syncer finds the last common ancestor block of the main branch and side branch.

2. Rollback master branch

State is reset to the point at which the common ancestor block was executed

3. Rollforward side branch

Syncer runs from the next number of the common ancestor block to the head block of the side branch. At
this time, only StateDB is changed and Chain info and Tx info are not changed.

4. Swap chain meta

Syncer do not change the chain info during rollback and rollforward to atomically change the chain.
Change the chain meta information after the previous process has been successfully completed. At this
time, chain info and transaction info are deleted for the rollbacked block, and new chain info and transac-
tion info are added for the rollforwarded block.

Transactions belonging to rollbacked blocks but not included in rollforwarded blocks are returned to
mempool. This is to prevent transaction loss.

92 Chapter 7. Technical Specifications

aergo-guide Documentation

7.12.4 Syncronization

When you add a new node or restart a node that was temporarily stopped, you need to get the latest chain information
from existing nodes. This is called the synchonization process.

The situation that causes sync is as follows:

• When the peer goes through a handshake process to connect, the height of the chain of the remote peer is higher
than the current node

• If the height of the block notified in the peer is higher than the head of the current main branch

The syncer specifies the node that sent the block that caused the sync to the target node and synchronizes with the
chain of that node.

To synchronize a long chain, a large amount of block information must be received from the peer node. This is likely
to cause a performance degrade at the peer node. Therefore, it gets information from as many peers as possible to
distribute the load.

Synchronize step

1. Find common ancestor: Syncer finds the last common ancestor of the current node chain and the target node
chain.

2. Get hashes: It gets the hashes of the block after the common ancestor from the target node.

3. Get blocks: N blocks are requested from all valid peers connected to the current node.

4. Insert blocks to chain: The received block is added to the chain using the chain service.

2, 3, and 4 are performed in parallel. Most of the time is spent in the insert part of the chain.

7.12. Chain Management 93

aergo-guide Documentation

94 Chapter 7. Technical Specifications

CHAPTER 8

Contributing

As AERGO is an open-source platform, individual contributions are vital.

There are many ways that you can help, no matter if you are a novice or advanced programmer or user.

8.1 Ways to Contribute

These are just some examples for welcome contributions.

• Improve this documentation

• File a bug report

• Submit a pull request

• Discuss protocol changes

• Help answering questions

95

aergo-guide Documentation

96 Chapter 8. Contributing

CHAPTER 9

Join the Community

An open-source platform lives from its community. You can reach out to the Aergo team and other members of the
developer community via these channels:

• Discord (for technical discussions)

• Github

• Twitter

• Telegram

• Telegram Announcements

97

https://discord.gg/YuPCCeH
https://github.com/aergoio
https://twitter.com/aergo_io
https://t.me/aergoofficial
https://t.me/aergoannouncements

aergo-guide Documentation

98 Chapter 9. Join the Community

CHAPTER 10

Building from Source

This page explains how you can build aergo from source.

If you are only interested in running the aergo tools, it is easier to use pre-built binaries or Docker images instead, as
explained in Quickstart.

Prerequisites

• Go1.12.5+ - https://golang.org/dl

• CMake 3.0.0 or higher - https://cmake.org

• Optional: Protobuffer - https://github.com/google/protobuf

10.1 Linux

1. Install dependencies

apk update
apk add git build-base go libgcc

2. Install aergo

go get -d github.com/aergoio/aergo
cd ${GOPATH}/src/github.com/aergoio/aergo
git submodule init && git submodule update
make

3. Set environment

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${GOPATH}/src/github.com/aergoio/aergo/
→˓libtool/lib

4. Run server

99

../running-node/quickstart.html
https://golang.org/dl
https://cmake.org
https://github.com/google/protobuf

aergo-guide Documentation

./bin/aergosvr

10.2 macOS (Do not support anymore)

1. If you haven’t already, install homebrew.

2. Install dependencies

brew install go
brew install cmake # optional
brew install protobuf # optional

3. Install aergo

go get -d github.com/aergoio/aergo
cd `go env GOPATH`/src/github.com/aergoio/aergo
git submodule init && git submodule update
make

4. Set environment

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${GOPATH}/src/github.com/aergoio/aergo/
→˓libtool/lib

5. Run server

./bin/aergosvr

10.3 Windows

Building on Windows is currently not supported.

10.4 Generating protobuf files

If you changed the protobuf files, you need to re-compile the type definitions.

1. Install protoc-gen-go

GIT_TAG="v1.1.0" # set version of protoc-gen-go to 1.1.0, on which aergo v0.8.x
→˓depends.
go get -u github.com/golang/protobuf/protoc-gen-go
git -C "$(go env GOPATH)"/src/github.com/golang/protobuf checkout $GIT_TAG
go install github.com/golang/protobuf/protoc-gen-go

2. Generate type definitions from protobuf files

make protoc

100 Chapter 10. Building from Source

https://brew.sh/

CHAPTER 11

SDKs

Aergo offers language-specific SDKs to make it easy to develop Dapps.

• Java

• Javascript

• Python

• C

• C++

• C#

• VB.NET

• Swift

• Ruby

• PHP

101

https://github.com/aergoio/heraj/wiki
https://herajs.readthedocs.io/
https://aergo-herapy.readthedocs.io/
https://github.com/aergoio/libaergo/
https://github.com/aergoio/libaergo/
https://github.com/aergoio/libaergo/
https://github.com/aergoio/libaergo/
https://github.com/aergoio/libaergo/
https://github.com/aergoio/libaergo/
https://github.com/aergoio/heraphp/

aergo-guide Documentation

102 Chapter 11. SDKs

CHAPTER 12

Other Languages

If you are using another language that is currently not supported by a decicated SDK, you can still interact with
AERGO using the API directly.

Please refer to the API reference.

You can also contact us with a request to implement support for your requirements.

103

../api/index.html

aergo-guide Documentation

104 Chapter 12. Other Languages

CHAPTER 13

Tools

13.1 Aergocli

aergocli is a command line tool that interfaces with the GRPC exposed by aergosvr.

• Installation

• Usage

• Local or remote keystore?

– Continue using the old method (server-based accounts)

– Migration from remote to local keystore

13.1.1 Examples

With all account actions, you will be prompted for a password. For automation, you can also pass it as the
--password flag, but that is less secure depending on your terminal environment.

Changed in version 2.2.0: Account actions now use a local keystore. The path can be configured using --keystore
(default: $HOME/.aergo). In previous versions, this used a remote keystore on the node you connected to. You can
restore the previous behavior using the --node-keystore option. See below for examples.

Create account

$ aergocli account new
Enter Password:
Repeat Password:
AmP96xd6WYRe1jrWixC3VyFXRCzwZxAJtU3Uc54vn182xG9Yn9Cs

105

aergo-guide Documentation

Please remember the password carefully because there is no way to retrieve the password again.

Send transaction

$./aergocli sendtx --from AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q --to
→˓AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ --amount 1aergo
{
"hash": "AkjqFcayutenhonnZPU4X5QB1fNBTZv3o2fNzMLNQR3q"

}

Look up transaction

Use gettx command. If transaction is in block, return transaction with index that represent where it’s included.

When transaction is in mempool, gettx result is like below

$ aergocli gettx 9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg
{
"Hash": "9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg",
"Body": {
"Nonce": 2,
"Account": "AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q",
"Recipient": "AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ",
"Amount": "1230000000000000000",
"Payload": "",
"Limit": 0,
"Price": "0",
"Type": 0,
"Sign":

→˓"AN1rKvt8EZHKEE2wNPXAhGcDA4pMo7yRRjTWCcpyrW9QCMv6nMhvhqriWujHdaDJgJ6ft6VLDActEFtUFA2pRnRJFVFSWxPSR
→˓"
}

}

When transaction is in block, gettx result is like below

$ aergocli gettx 9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg
{
"TxIdx": {
"BlockHash": "ECVG696Jc7FvUL86sDSxT28akh4Hf1RXFRzmGqtAv9zU",
"Idx": 1

},
"Tx": {
"Hash": "9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg",
"Body": {
"Nonce": 2,
"Account": "AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q",
"Recipient": "AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ",
"Amount": "1230000000000000000",
"Payload": "",
"Limit": 0,
"Price": "0",
"Type": 0,
"Sign":

→˓"AN1rKvt8EZHKEE2wNPXAhGcDA4pMo7yRRjTWCcpyrW9QCMv6nMhvhqriWujHdaDJgJ6ft6VLDActEFtUFA2pRnRJFVFSWxPSR
→˓"

(continues on next page)

106 Chapter 13. Tools

aergo-guide Documentation

(continued from previous page)

}
}

}

Check block

$ aergocli getblock --hash GGT9wahqcKKGKUncMuhRLLL3JaCs2MEBx7V8UdrK9JNi
{
"Hash": "FwBq14HiBPMPoGV6jYxW4AaGHsgoD9UJjmYyWwnQR6xU",
"Header": {
"ChainID": "1111117eaxEoT4pDHzFTCyKv93acfDHbsytUPK3oqU6",
"PrevBlockHash": "GocCiGXUVV4ygsbEi1VaJKkBwyvRsV4W4Qj72J5ZciZK",
"BlockNo": 17655,
"Timestamp": 1548314097754698000,
"BlockRootHash": "5etqxP9HTtzgN8a3tN5Ev8ka4aG3aQM5GYNikwmsV41q",
"TxRootHash": "AkjqFcayutenhonnZPU4X5QB1fNBTZv3o2fNzMLNQR3q",
"ReceiptsRootHash": "7ZpYoMA2feXoXAit5J2FFuX16cwz9hp8twGwu7rUHCRZ",
"Confirms": 2,
"PubKey": "GZsJqUTtFVJTJ5SbwuFac4NxZFWgTRjpioPD76UL1DHZLhxmWg",
"Sign":

→˓"AN1rKvtSPyBqB34TGmEQ6FQ8Lz61dvQ4zVAHodAnPGTnXD7gihmSkgrWcyeEoXNeS6zLTtgjukcTiwSKTHmMATGe8PXgwcJJK
→˓",

"CoinbaseAccount": ""
},
"Body": {
"Txs": [
{
"Hash": "AkjqFcayutenhonnZPU4X5QB1fNBTZv3o2fNzMLNQR3q",
"Body": {
"Nonce": 3,
"Account": "AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q",
"Recipient": "AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ",
"Amount": "1000000000000000000",
"Payload": "",
"Limit": 0,
"Price": "0",
"Type": 0,
"Sign":

→˓"381yXZAWNW8ZiST7PCLmywUsNVQvzgwhiyu9pxVDSvUhwyLHmoL7BQGXQhCNp7QZQycvbwT2nQJ7etscArfRbHu98Qi5MSmY
→˓"

}
}

]
}

}

Sign transaction

$ aergocli signtx --address AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q --
→˓jsontx "{ \
\"Nonce\": 2, \
\"Account\": \"AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q\", \
\"Recipient\": \"AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ\", \

(continues on next page)

13.1. Aergocli 107

aergo-guide Documentation

(continued from previous page)

\"Amount\": \"1.23aergo\", \
\"Payload\": \"\", \
\"Limit\": 0, \
\"Price\": \"0\", \
\"Type\": 0 }"
Enter Password:
{
"Hash": "9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg",
"Body": {
"Nonce": 2,
"Account": "AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q",
"Recipient": "AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ",
"Amount": "1230000000000000000",
"Payload": "",
"Limit": 0,
"Price": "0",
"Type": 0,
"Sign":

→˓"AN1rKvt8EZHKEE2wNPXAhGcDA4pMo7yRRjTWCcpyrW9QCMv6nMhvhqriWujHdaDJgJ6ft6VLDActEFtUFA2pRnRJFVFSWxPSR
→˓"
}

}

Commit Transaction

Send given transactions to aergosvr

$ aergocli committx --jsontx "{
\"Hash\": \"9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg\",
\"Body\": {

\"Nonce\": 2,
\"Account\": \"AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q\",
\"Recipient\": \"AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ\",
\"Amount\": \"1230000000000000000\",
\"Payload\": \"\",
\"Limit\": 0,
\"Price\": \"0\",
\"Type\": 0,
\"Sign\": \

→˓"AN1rKvt8EZHKEE2wNPXAhGcDA4pMo7yRRjTWCcpyrW9QCMv6nMhvhqriWujHdaDJgJ6ft6VLDActEFtUFA2pRnRJFVFSWxPSR\
→˓"
}
}"
{
"results": [
{
"hash": "9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg"
}

]
}

Get Account state

Check account’s state (nonce, balance)

108 Chapter 13. Tools

aergo-guide Documentation

$ aergocli getstate --address "AmNvFyqKFGVWvQ3MTi3eMFiNB9zvL9cK43B9c9bzcA732YZjZgfn"

Get state with a compressed merkle proof.

$ aergocli getstate --address "AmNvFyqKFGVWvQ3MTi3eMFiNB9zvL9cK43B9c9bzcA732YZjZgfn" -
→˓-proof --compressed

By default, the returned state is the one at the latest block, but you may specify any past block’s state root.

$ aergocli getstate --address "AmNvFyqKFGVWvQ3MTi3eMFiNB9zvL9cK43B9c9bzcA732YZjZgfn" -
→˓-root "9NBSjkcNTdE5ciBxfb52RmsVW7vgX5voRsv6KcosiNjE"

Show connected peers

Use getpeers to show list of peers connected to a aergosvr.

It shows remote peers by default, but with --self options, local aergosvr itself is shown in list. You can find
it by checking Self property. If you want to see only opened peers, use with --nohidden options. The option
--detail is added in v2, which change output information level. --detail=0 or no option shows same as prvious
version, --detail=-1 shows shortened version, and --detail=1 shows more information about peers

normal output

[
{
"Role": "Producer",
"Address": {
"Address": "13.124.83.51",
"Port": "7846",
"PeerId": "16Uiu2HAmQn3nFBGhJM7TnZRguLhgUx1HnpNL2easdt2JrxdbFjtb"
},
"BestBlock": {
"BlockHash": "BXAFbTbwEuywukzBqRKdCsuUpinnNQsVJCAXNVJAR6F4",
"BlockNo": 1251651
},
"LastCheck": "2019-02-27T11:26:38.481451+09:00",
"State": "RUNNING",
"Hidden": false,
"Self": true
"Version": "v2.0.0-dev1-14-g138d4f04"

},
{
"Role": "Producer",
"Address": {
"Address": "13.211.156.203",
"Port": "7846",
"PeerId": "16Uiu2HAkvbHmK1Ke1hqAHmahwTGE4ndkdMdXJeXFE3kgBs17k2oQ"

},
"BestBlock": {
"BlockHash": "AF68dtMMHd1h5LjxSyYY9AomMve6Qk2kBRSoQuuuSkhM",
"BlockNo": 1251650

},
"LastCheck": "2019-02-27T11:26:38.349938+09:00",
"State": "RUNNING",
"Hidden": false,
"Self": false

(continues on next page)

13.1. Aergocli 109

aergo-guide Documentation

(continued from previous page)

"Version": "v2.0.0-dev1-14-g138d4f04"
},
{
"Role": "Producer",
"Address": {
"Address": "192.168.2.21",
"Port": "7846",
"PeerId": "16Uiu2HAmAnQ5jjk7huhepfFtDFFCreuJ21nHYBApVpg8G7EBdwme"
},
"BestBlock": {
"BlockHash": "BXAFbTbwEuywukzBqRKdCsuUpinnNQsVJCAXNVJAR6F4",
"BlockNo": 1251651
},
"LastCheck": "2019-02-27T11:26:38.364262+09:00",
"State": "RUNNING",
"Hidden": true,
"Self": false
"Version": "v2.0.0-dev1-14-g138d4f04"

},
{
"Role": "Agent",
"Address": {
"Address": "192.168.2.11",
"Port": "7846",
"PeerId": "16Uiu2HAm7e2TBhLDrsEyRVTnqqeyZznLxfpHcWQTdCZd8r4DhF9Q"

},
"BestBlock": {
"BlockHash": "BXAFbTbwEuywukzBqRKdCsuUpinnNQsVJCAXNVJAR6F4",
"BlockNo": 1251651

},
"LastCheck": "2019-02-27T11:26:38.342138+09:00",
"State": "RUNNING",
"Hidden": false,
"Self": false,
"Version": "v2.0.0-dev1-14-g138d4f04"

}
]

shortened output

[
"16*dbFjtb;13.124.83.51/7846;Producer;1251651",
"16*17k2oQ;13.211.156.203/7846;Producer;1251650",
"16*EBdwme;192.168.2.21/7846;Producer;1251651",
"16*4DhF9Q;192.168.2.11/7846;Agent;1251651"

]

Using remote node-based accounts

Deprecated since version 2.2.0: To be removed in future versions, use local keystores (the new default) instead.

You can also store accounts on a remote node. When using remote account management, pass the
--node-keystore flag to all commands. In versions prior to 2.2.0, this was the default behavior.

110 Chapter 13. Tools

aergo-guide Documentation

Create, Export, Import account

$ aergocli account new --node-keystore
Enter Password:
Repeat Password:
AmNFcocofUvmyLtXA6WgpANbjiF7RScGvQ4memNyNzS4ARJox3yq

This account can be exported and imported.

$ aergocli account export --address
→˓AmNFcocofUvmyLtXA6WgpANbjiF7RScGvQ4memNyNzS4ARJox3yq --node-keystore >
→˓AmNFcocofUvmyLtXA6WgpANbjiF7RScGvQ4memNyNzS4ARJox3yq__keystore.txt
Enter Password:

$ aergocli account import --node-keystore --path
→˓AmNFcocofUvmyLtXA6WgpANbjiF7RScGvQ4memNyNzS4ARJox3yq__keystore
AmNFcocofUvmyLtXA6WgpANbjiF7RScGvQ4memNyNzS4ARJox3yq

Unlock

Before request send transaction you must unlock your account first

$ aergocli account unlock --node-keystore --address
→˓AmQFgm1gCvoRw2RfBXnipRmeCLEc6tTQ1kBMmLEzHjp91xYnXK78
Enter Password:
AmQFgm1gCvoRw2RfBXnipRmeCLEc6tTQ1kBMmLEzHjp91xYnXK78

Sign transaction

With --node-keystore option, aergocli can sign the transaction using private key of account on the remote node.

$ aergocli -p 17845 signtx --address
→˓AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q --jsontx "{ \
\"Nonce\": 2, \
\"Account\": \"AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q\", \
\"Recipient\": \"AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ\", \
\"Amount\": \"1.23aergo\", \
\"Payload\": \"\", \
\"Limit\": 0, \
\"Price\": \"0\", \
\"Type\": 0 }" --node-keystore
Enter Password:
{
"Hash": "9cAphBMD2zJCD13QfCn7rmxh5iDfrj6M9Wmo54TPNPCg",
"Body": {
"Nonce": 2,
"Account": "AmPLWBzx4tAYt91JM3jKWFs3aYWHSvKpYYzdUQuQMNa7jAw5t65q",
"Recipient": "AmLnVfGwq49etaa7dnzfGJTbaZWV7aVmrxFes4KmWukXwtooVZPJ",
"Amount": "1230000000000000000",
"Payload": "",
"Limit": 0,
"Price": "0",
"Type": 0,

(continues on next page)

13.1. Aergocli 111

aergo-guide Documentation

(continued from previous page)

"Sign":
→˓"AN1rKvt8EZHKEE2wNPXAhGcDA4pMo7yRRjTWCcpyrW9QCMv6nMhvhqriWujHdaDJgJ6ft6VLDActEFtUFA2pRnRJFVFSWxPSR
→˓"
}

}

13.1.2 Installation

Using the binary

You can find the latest binary release on Github. Just download and extract the archive.

Using Docker

You can also use the Docker image aergo/tools. Example: docker run --rm aergo/tools aergocli
version

13.1.3 Usage

In order to use all features of aergocli you will need to have the end point (IP address and port number) to a aergosvr
instance.

For a list of all commands known to aergocli, simply run it with no arguments. To see the usage of sub commands,
run those without arguments, e.g. aergocli account.

Usage:
aergocli [command]

Available Commands:
account Account command
blockchain Print current blockchain status
bp show BP list
chaininfo Print current blockchain information
chainstat Print chain statistics
cluster Cluster command for raft consensus
committx commit transaction to aergo server
contract Contract command
enterprise Enterprise command
event Get event
getblock Get block information
getconsensusinfo Print consensus info
getpeers Get Peer list
getstate Get account state
gettx Get transaction information
help Help about any command
keygen Generate private key
listblocks Get block headers list
metric Show metric informations
name Name command
node Show internal metric
receipt Receipt command
sendtx Send transaction
serverinfo Show configs and status of server
signtx Sign transaction
verifytx Verify transaction

(continues on next page)

112 Chapter 13. Tools

https://github.com/aergoio/aergo/releases/latest
https://hub.docker.com/r/aergo/tools

aergo-guide Documentation

(continued from previous page)

version Print the version number of Aergocli
votestat show voting stat

Flags:
--config string config file (default is cliconfig.toml)

-h, --help help for aergocli
--home string aergo cli home path

-H, --host string Host address to aergo server (default "localhost")
--keystore string Path to keystore (default "$HOME/.aergo")
--node-keystore use node keystore

-p, --port int32 Port number to aergo server (default 7845)
--tlscacert string aergosvr CA certification file for TLS
--tlscert string client certification file for TLS
--tlskey string client key file for TLS
--tlsservername string aergosvr name for TLS

Use "aergocli [command] --help" for more information about a command.

13.1.4 Local or remote keystore?

Changed in version 2.2.0.

Since version 2.2.0, aergocli uses a local keystore by default. When you create or import accounts, they are saved on
the local machine in an encrypted keystore file format. The default storage directory is $HOME/.aergo, but you can
change it by passing the --keystore flag. Whenever you sign or send a transaction, these locally saved accounts
are used.

In aergocli versions before 2.2.0, account actions would use an account that is stored on the remote server (full node)
you are connected to. This is fine if you are running your own full node, but for the vast majority of users who want
to connect to publicly available nodes, this is not useful. That is why the default behavior was changed to use local
keystores.

Continue using the old method (server-based accounts)

To use the pre-2.2 method of selecting accounts from the connected server, pass the --node-keystore flag to
aergocli. Remember you then have to unlock accounts before using them on the server. Check out the examples.

Migration from remote to local keystore

To migrate from the old to the new storage format, first export an account from your node as a keystore file, and then
import it into your local keystore:

Export from remote
$ aergocli -H YOUR_NODE_IP --node-keystore account export --address YOUR_ADDRESS >
→˓YOUR_ADDRESS__keystore.txt

Import locally
$ aergocli account import --path YOUR_ADDRESS__keystore.txt

See also:

In version 2.2.0, the internal keystore method was also changed. See here for details.

13.1. Aergocli 113

./examples.html#using-remote-node-based-accounts
../../running-node/configuration.html#account-storage

aergo-guide Documentation

13.2 Aergoluac

aergoluac is a command line tool that compile lua script to binary code for contract.

For a list of all commands known to aergoluac, simply run it with no arguments.

Usage:
aergoluac [flags] srcfile bcfile

Flags:
-a, --abi string abi filename
-h, --help help for aergoluac

--payload print the compilation result consisting of bytecode and abi

13.2.1 Examples

out to file

aergoluac test.lua test.bc -a test.abi

out to console

aergoluac test.lua --payload

13.3 Ship

Ship is a tool for developing lua smart contracts. Its main features are:

• Manage project structure

• Install and publish packages

• Build source fragments

• Run unit test cases

• Deployment, execution and querying of a contract.

Please refer to the Ship Github Wiki for details.

13.4 Brick

Brick is an interactive shell program to communicate with an aergo VM for testing. This also provides a batch function
to test and help to develop smart contracts.

The main advantage of using this tool is that you don’t need a real blockchain network. Instead, you can run operations
directly in the aergo virtual machine.

See Brick reference

114 Chapter 13. Tools

https://github.com/aergoio/ship/wiki
https://github.com/aergoio/aergo/tree/master/cmd/brick

aergo-guide Documentation

13.5 Polaris

Polaris is a server that provides node discovery for Aergo server.

For bootstrapping new nodes, the npaddpeers configuration option can be used to connect to designated peers.

However, since Aergo version 0.11, the new Polarais server has added the ability to automatically connect to nodes
belonging to the specified block chain without manually creating the node list information.

13.5.1 Features

• Aergo nodes can query addresses of other Aergo nodes. In this case, the chain of the Aergo node and the chain
of Polaris must be the same.

• Aergo nodes can register itself with Polaris. Polaris checks to see if it can connect to the Aergo node and adds
it to the node list.

• One Polaris server per designated block chain

13.5.2 Building Polaris

This section describes how to build Polaris from source without using the Docker. Polaris is available as a sub-module
in the aergo project currently in version 0.11.

1. Get the source from github.com/aergoio/aergo.

2. Build the polaris executable with make polaris.

13.5.3 Configuration

Four files are used to set Polaris behavior.

1. Polaris configuration file: Determines the overall operation of Polaris. It also specifies the path to other config-
uration related files.

2. Private key file: PK file to use for Polaris communication. It uses the same format as aergosvr’s private key file.

3. Genesis file: Contains the chain information of nodes to be provided by Polaris. Use the same format as the
genesis file used to initialize aergosvr.

4. Log configuration file: The file name is arglog.toml, and it uses the same format as the file used by aergosvr.

Configuration file creation and example

Create private key file

It can be generated by aergocli using the keygen command.

aergocli keygen mychain-polaris
Wrote files mychain-polaris.{key,pub,id}.

13.5. Polaris 115

aergo-guide Documentation

Genesis file creation

{
"chain_id":{

"magic": "[insert an identifier string for your network]",
"public": false,
"mainnet": false,
"coinbasefee": "1000000000",
"consensus": "dpos"

},
"timestamp": 1548918000000000000,
"balance": {
},
"bps": [
]

}

Polaris configuration file

authdir = "/blockchain/polaris/auth" # base directory for files about
→˓authentication and authorization

[rpc]
netserviceaddr = "127.0.0.1" # RPC access address. The default setting
→˓is 127.0.0.1, which allows RPC access only on the local machine and blocks RPC
→˓connections remotely.
netserviceport = 8915

[p2p]
netprotocoladdr = "[real IP address]" # An externally accessible IP address or
→˓domain name
netprotocolport = 8916
npbindaddr = ""
npkey = "mychain-polaris.key" # Location of private key file

[polaris]
allowprivate = true # Whether to allow the private address of
→˓the node's access address. Used when building Polaris for private chains operated
→˓within a test or private network.
genesisfile = "[location of genesis file]" # Genesis file location
enableblacklist = false # Whether to turn on blacklist or not.
→˓blacklist entries will be saved in <authdir>

Log configuration file

Refer to the arglog documentation.

13.5.4 Running Polaris

116 Chapter 13. Tools

../running-node/configuration.html#logging-options

aergo-guide Documentation

Using Docker

docker run -d -w /tools -v /blockchain/polaris:/tools -p 8916:8916 -p 8915:8915 --
→˓restart="always" --name polaris-node aergo/polaris polaris --home /tools --config /
→˓tools/polaris-conf.toml

Manually

Manually build and run the live polaris executable in the following format:

./polaris --config polaris-conf.toml

13.5.5 Connecting to Polaris

To connect to a Polaris server, supply its address in the aergosvr configuration file.

See Node Configuration for details.

[p2p]
...
npusepolaris= true
npaddpolarises = [

"/ip4/192.168.0.2/tcp/8915/p2p/
→˓16Uiu2HAmJCmxe7CrgTbJBgzyG8rx5Z5vybXPWQHHGQ7aRJfBsoFs"

]
...

13.5.6 Colaris

Colaris is a client for Polaris RPC connection.

Building colaris

Like Polaris, build as a sub-module of aergo.

1. Get the source from github.com/aergoio/aergo.

2. Build the executable with make colaris.

Usage

It is the same interface as aergocli.

./colaris [flags] <command> [[arg1]...]

Flags

1. -H <hostname> Address to remote server when requesting. The default value is localhost (127.0.0.1)

2. -p <portnumber> RPC port number, default is 8915

13.5. Polaris 117

../running-node/configuration.html

aergo-guide Documentation

Commands

node: returns the actor state of Polaris.

current: returns list of nodes registered in Polaris.

Example:

ubuntu@mypolaris:/blockchain/polaris$./colaris current
{
"total": 1,
"peers": [
{
"address": {
"address": "52.231.31.38",
"port": 7846,
"peerID": "16Uiu2HAmBfFABqQ2eWwNMv1A2WJCqVykgPS2sz72jrYTHeZgyors"

},
"connected": 1549526282,
"lastCheck": 1549526463
}

]
}

config: set or get dynamic configurations of polaris. There is just a single config ‘blacklist’, in version 1.2.3.

blacklist: set or get blacklist configuration. blacklist entry can be set by peerID, ip address, cidr or combined.
NOTE: it is NOT for security rather avoiding unintentional fork, since changing ip address or peer id is very easy.

Example:

ubuntu@mypolaris:/blockchain/polaris$./colaris config blacklist show
ubuntu@mypolaris:/blockchain/polaris$./colaris config blacklist add --peerid
→˓16Uiu2HAmDFV41vku39rsMtXBaFT1MFUDyHxXiDJrUDt7gJycSKnX --address "192.168.1.11"
ubuntu@mypolaris:/blockchain/polaris$./colaris config blacklist add --address "192.
→˓168.1.11"
ubuntu@mypolaris:/blockchain/polaris$./colaris config blacklist add --cidr
→˓"2001:0db8:0123:4567:89ab:cdef:1234:5678/96"
ubuntu@mypolaris:/blockchain/polaris$./colaris config blacklist rm 2

118 Chapter 13. Tools

CHAPTER 14

API

The Aergo server exposes an RPC API over gRPC.

14.1 Using gRPC

gRPC is a standard for RPC APIs using protobuffer messages for data exchange. The main advantages are typed
messages and efficiency: data is packed tightly and sent over HTTP2.

If you want to use the gRPC API directly, please refer to the official documentation to get started. You can find the
protobuf definitions in aergoio/aergo-protobuf.

Alternatively, you can use one of the SDKs which wrap the same functionality in language-specific styles.

14.2 Protocol Documentation

This reference is auto-generated from aergoio/aergo-protobuf.

• rpc.proto

– AergoRPCService

* NodeState

* Metric

* Blockchain

* GetChainInfo

* ChainStat

* ListBlockHeaders

* ListBlockMetadata

* ListBlockStream

119

https://grpc.io/
https://github.com/aergoio/aergo-protobuf
../sdks/index.html
https://github.com/aergoio/aergo-protobuf

aergo-guide Documentation

* ListBlockMetadataStream

* GetBlock

* GetBlockMetadata

* GetBlockBody

* GetTX

* GetBlockTX

* GetReceipt

* GetABI

* SendTX

* SignTX

* VerifyTX

* CommitTX

* GetState

* GetStateAndProof

* CreateAccount

* GetAccounts

* LockAccount

* UnlockAccount

* ImportAccount

* ExportAccount

* ExportAccountKeystore

* QueryContract

* QueryContractState

* GetPeers

* GetVotes

* GetAccountVotes

* GetStaking

* GetNameInfo

* ListEventStream

* ListEvents

* GetServerInfo

* GetConsensusInfo

* ChangeMembership

* GetEnterpriseConfig

* GetConfChangeProgress

– AccountAddress

120 Chapter 14. API

aergo-guide Documentation

– AccountAndRoot

– AccountVoteInfo

– BlockBodyPaged

– BlockBodyParams

– BlockHeaderList

– BlockMetadata

– BlockMetadataList

– BlockchainStatus

– ChainId

– ChainInfo

– ChainStats

– CommitResult

– CommitResultList

– ConfigItem

– ConfigItem.PropsEntry

– ConsensusInfo

– Empty

– EnterpriseConfig

– EnterpriseConfigKey

– EventList

– ImportFormat

– Input

– KeyParams

– ListParams

– Name

– NameInfo

– NodeReq

– Output

– PageParams

– Peer

– PeerList

– PeersParams

– Personal

– ServerInfo

– ServerInfo.ConfigEntry

– ServerInfo.StatusEntry

14.2. Protocol Documentation 121

aergo-guide Documentation

– SingleBytes

– SingleString

– Staking

– VerifyResult

– Vote

– VoteInfo

– VoteList

– VoteParams

– CommitStatus

– VerifyStatus

• blockchain.proto

– ABI

– AccountProof

– Block

– BlockBody

– BlockHeader

– ContractVarProof

– Event

– FilterInfo

– FnArgument

– Function

– Proposal

– Query

– Receipt

– State

– StateQuery

– StateQueryProof

– StateVar

– Tx

– TxBody

– TxIdx

– TxInBlock

– TxList

– TxType

• metric.proto

– Metrics

122 Chapter 14. API

aergo-guide Documentation

– MetricsRequest

– PeerMetric

– MetricType

• Scalar Value Types

14.2.1 rpc.proto

AergoRPCService

AergoRPCService is the main RPC service providing endpoints to interact with the node and blockchain. If not
otherwise noted, methods are unary requests.

NodeState

Request Type: NodeReq Response Type: SingleBytes

Returns the current state of this node

Metric

Request Type: MetricsRequest Response Type: Metrics

Returns node metrics according to request

Blockchain

Request Type: Empty Response Type: BlockchainStatus

Returns current blockchain status (best block’s height and hash)

GetChainInfo

Request Type: Empty Response Type: ChainInfo

Returns current blockchain’s basic information

ChainStat

Request Type: Empty Response Type: ChainStats

Returns current chain statistics

ListBlockHeaders

Request Type: ListParams Response Type: BlockHeaderList

Returns list of Blocks without body according to request

14.2. Protocol Documentation 123

aergo-guide Documentation

ListBlockMetadata

Request Type: ListParams Response Type: BlockMetadataList

Returns list of block metadata (hash, header, and number of transactions) according to request

ListBlockStream

Request Type: Empty Response Type: Block

Returns a stream of new blocks as they get added to the blockchain

ListBlockMetadataStream

Request Type: Empty Response Type: BlockMetadata

Returns a stream of new block’s metadata as they get added to the blockchain

GetBlock

Request Type: SingleBytes Response Type: Block

Return a single block incl. header and body, queried by hash or number

GetBlockMetadata

Request Type: SingleBytes Response Type: BlockMetadata

Return a single block’s metdata (hash, header, and number of transactions), queried by hash or number

GetBlockBody

Request Type: BlockBodyParams Response Type: BlockBodyPaged

Return a single block’s body, queried by hash or number and list parameters

GetTX

Request Type: SingleBytes Response Type: Tx

Return a single transaction, queried by transaction hash

GetBlockTX

Request Type: SingleBytes Response Type: TxInBlock

Return information about transaction in block, queried by transaction hash

124 Chapter 14. API

aergo-guide Documentation

GetReceipt

Request Type: SingleBytes Response Type: Receipt

Return transaction receipt, queried by transaction hash

GetABI

Request Type: SingleBytes Response Type: ABI

Return ABI stored at contract address

SendTX

Request Type: Tx Response Type: CommitResult

Sign and send a transaction from an unlocked account

SignTX

Request Type: Tx Response Type: Tx

Sign transaction with unlocked account

VerifyTX

Request Type: Tx Response Type: VerifyResult

Verify validity of transaction

CommitTX

Request Type: TxList Response Type: CommitResultList

Commit a signed transaction

GetState

Request Type: SingleBytes Response Type: State

Return state of account

GetStateAndProof

Request Type: AccountAndRoot Response Type: AccountProof

Return state of account, including merkle proof

14.2. Protocol Documentation 125

aergo-guide Documentation

CreateAccount

Request Type: Personal Response Type: Account

Create a new account in this node

GetAccounts

Request Type: Empty Response Type: AccountList

Return list of accounts in this node

LockAccount

Request Type: Personal Response Type: Account

Lock account in this node

UnlockAccount

Request Type: Personal Response Type: Account

Unlock account in this node

ImportAccount

Request Type: ImportFormat Response Type: Account

Import account to this node

ExportAccount

Request Type: Personal Response Type: SingleBytes

Export account stored in this node as wif format

ExportAccountKeystore

Request Type: Personal Response Type: SingleBytes

Export account stored in this node as keystore format

QueryContract

Request Type: Query Response Type: SingleBytes

Query a contract method

126 Chapter 14. API

aergo-guide Documentation

QueryContractState

Request Type: StateQuery Response Type: StateQueryProof

Query contract state

GetPeers

Request Type: PeersParams Response Type: PeerList

Return list of peers of this node and their state

GetVotes

Request Type: VoteParams Response Type: VoteList

Return result of vote

GetAccountVotes

Request Type: AccountAddress Response Type: AccountVoteInfo

Return staking, voting info for account

GetStaking

Request Type: AccountAddress Response Type: Staking

Return staking information

GetNameInfo

Request Type: Name Response Type: NameInfo

Return name information

ListEventStream

Request Type: FilterInfo Response Type: Event

Returns a stream of event as they get added to the blockchain

ListEvents

Request Type: FilterInfo Response Type: EventList

Returns list of event

14.2. Protocol Documentation 127

aergo-guide Documentation

GetServerInfo

Request Type: KeyParams Response Type: ServerInfo

Returns configs and statuses of server

GetConsensusInfo

Request Type: Empty Response Type: ConsensusInfo

Returns status of consensus and bps

ChangeMembership

Request Type: MembershipChange Response Type: MembershipChangeReply

Add & remove member of raft cluster

GetEnterpriseConfig

Request Type: EnterpriseConfigKey Response Type: EnterpriseConfig

Returns enterprise config

GetConfChangeProgress

Request Type: SingleBytes Response Type: ConfChangeProgress

Return a status of changeCluster enterprise tx, queried by requestID

AccountAddress

AccountAndRoot

AccountVoteInfo

BlockBodyPaged

BlockBodyParams

BlockHeaderList

BlockMetadata

BlockMetadataList

BlockchainStatus

BlockchainStatus is current status of blockchain

128 Chapter 14. API

aergo-guide Documentation

ChainId

ChainInfo

ChainInfo returns chain configuration

ChainStats

ChainStats corresponds to a chain statistics report.

CommitResult

CommitResultList

ConfigItem

ConfigItem.PropsEntry

ConsensusInfo

info and bps is json string

Empty

EnterpriseConfig

EnterpriseConfigKey

EventList

ImportFormat

Input

KeyParams

ListParams

Name

NameInfo

NodeReq

Output

PageParams

Peer

14.2. Protocol Documentation 129

aergo-guide Documentation

PeerList

PeersParams

Personal

ServerInfo

ServerInfo.ConfigEntry

ServerInfo.StatusEntry

SingleBytes

SingleString

Staking

VerifyResult

Vote

VoteInfo

VoteList

VoteParams

CommitStatus

VerifyStatus

14.2.2 blockchain.proto

ABI

AccountProof

Block

BlockBody

BlockHeader

ContractVarProof

Event

FilterInfo

FnArgument

130 Chapter 14. API

aergo-guide Documentation

Function

Proposal

Query

Receipt

State

StateQuery

StateQueryProof

StateVar

Tx

TxBody

TxIdx

TxIdx specifies a transaction’s block hash and index within the block body

TxInBlock

TxList

TxType

14.2.3 metric.proto

Metrics

MetricsRequest

PeerMetric

MetricType

14.2.4 Scalar Value Types

14.2. Protocol Documentation 131

	Introduction
	Design goals
	Current features
	Roadmap

	Dapp Development
	Development cycle
	Design
	Clients
	Smart contracts
	Infrastructure

	Running a Node
	Quickstart
	Configuration
	Monitoring
	Configuring a Network
	Advanced Topics
	Troubleshooting

	Using Public Networks
	Connecting to Well-known Nodes
	Syncing
	Creating Accounts
	Funding Accounts
	Monitoring
	Snapshots
	Troubleshooting

	Using Raft consensus
	Configuration
	Configuring a Network Using RAFT
	Dynamic Membership Changement
	Recovery

	Smart Contracts
	Lua
	Aergo SCL
	Java Database Connectivity (JDBC)

	Technical Specifications
	Addresses
	Token Units
	Name System
	Consensus Algorithm
	Transactions
	Smart Contracts
	Transaction Fees
	Blocks
	P2P
	Keystore
	Block Management
	Chain Management

	Contributing
	Ways to Contribute

	Join the Community
	Building from Source
	Linux
	macOS (Do not support anymore)
	Windows
	Generating protobuf files

	SDKs
	Other Languages
	Tools
	Aergocli
	Aergoluac
	Ship
	Brick
	Polaris

	API
	Using gRPC
	Protocol Documentation

